homehome Home chatchat Notifications


Robotic bat wing teaches scientists new things about aerodynamics

For some time now, researchers have been experimenting with the idea of an aircraft that operates with flapping wings, just like insects or birds do, instead of conventional flat and long wings. The idea is that flapping wings allow a much greater degree of control and stability, allowing the aircraft to perform maneuvers otherwise impossible. […]

Tibi Puiu
February 27, 2013 @ 6:35 am

share Share

A robotic bat wing lets researchers measure forces, joint movements, and flight parameters, and learn more about how the real thing operates in nature (credit: Breuer and Swartz labs/Brown University)

A robotic bat wing lets researchers measure forces, joint movements, and flight parameters, and learn more about how the real thing operates in nature (credit: Breuer and Swartz labs/Brown University)

For some time now, researchers have been experimenting with the idea of an aircraft that operates with flapping wings, just like insects or birds do, instead of conventional flat and long wings. The idea is that flapping wings allow a much greater degree of control and stability, allowing the aircraft to perform maneuvers otherwise impossible. Still, such concepts are very difficult to implement and there’s still a lot of science behind these flapping wing dynamics to be uncovered, before a working, manned model can be made.

Steps in this direction are made constantly, and most recently researchers at Brown University developed a robotic bat wing that mimics that of a real fruitbat wing, which has allowed them to gain new insights into flapping flight dynamics in bats – the function of ligaments, the elasticity of skin, the structural support of musculature, skeletal flexibility, upstroke, and downstroke.

The robot wing is attached to a  force transducer in a wind tunnel that records the aerodynamic forces generated by the moving wing. By measuring the power output of the three servo motors that control the robot’s seven movable joints, researchers can evaluate the energy required to execute wing movements. Testing showed the robot can match the basic flight parameters of bats, producing enough thrust to overcome drag and enough lift to carry the weight of the model species.

This kind of data could have never been possible to generate, since real life bats can’t fly when connected to monitoring and recording instruments – they’re kind of bugged by it. But that’s not an issue now, since the researchers are even more contempt with their artificial model. With it, they can change and adjust any kind of parameter and see which are the most important in controlling flight dynamics.

“We can answer questions like, ‘Does increasing wing beat frequency improve lift and what’s the energetic cost of doing that?’” said Joseph Bahlman, a graduate student at Brown who led the project. “We can directly measure the relationship between these kinematic parameters, aerodynamic forces, and energetics.”

To understand just how valuable these new insights have been, let’s take a look at wing folding. Previously, scientists were led to believe that birds would fold their wings during flight from time to time to save energy. Test runs with the robotic bat wing, however, have shown that this behavior is all about generating lift.

In a flapping animal, positive lift is generated by the downstroke, but some of that lift is undone by the subsequent upstroke, which generates negative lift. By running trials with and without wing folding, the robot showed that folding the wing on the upstroke dramatically decreases that negative lift, increasing net lift by 50 percent.

The next step is to start playing with the materials,” Bahlamn said. “We’d like to try different wing materials, different amounts of flexibility on the bones, looking to see if there are beneficial tradeoffs in these material properties.”

Check out the Brown University below detailing the bat robotic wing study.

Findings were reported in the journal Bioinspiration and Biomimetrics.

share Share

This Freshwater Fish Can Live Over 120 Years and Shows No Signs of Aging. But It Has a Problem

An ancient freshwater species may be quietly facing a silent collapse.

If you use ChatGPT a lot, this study has some concerning findings for you

So, umm, AI is not your friend — literally.

Miyazaki Hates Your Ghibli-fied Photos and They're Probably a Copyright Breach Too

“I strongly feel that this is an insult to life itself,” he said.

Bad microphone? The people on your call probably think less of you

As it turns out, a bad microphone may be standing between you and your next job.

Sharks Aren’t Silent After All. This One Clicks Like a Castanet

This is the first evidence of sound production in a shark.

This Medieval Bear in Romania Was A Victim of Human Lead Pollution

One bear. Six years. One hidden history of pollution brought to light by a laser.

This AI-Powered Robot Just Made Breakfast and It Could Cook in Your Future Home

This $27,500 robot is the latest in a series of humanoid robots that have hit the market.

This AI Tool Can Scan Your Food and Tell You Exactly How Many Calories and Other Nutrients It Has

Knowing what's inside your food has never been so easy.

Some 31 million years ago, these iguanas rafted over 5,000 miles of ocean

New research reveals an extraordinary journey across the Pacific that defies what we thought was possible.

Magnolias are so ancient they're pollinated by beetles — because bees didn't exist yet

Before bees, there were beetles