homehome Home chatchat Notifications


Researchers use machine learning to build 3D maps from historical maps

Literally adding a new dimension to old maps.

Mihai Andrei
May 5, 2021 @ 12:12 pm

share Share

Historical maps are an important tool for analyzing changes in urban development. But these maps only provide 2D information, and oftentimes not much is known about building height.

With this in mind, a research team from Skoltech (Russia) and FBK (Italy) developed a machine learning algorithm that can assess building height from historical maps, which could help researchers better understand the forces that shaped cities to what we see today.

Image credits: Farella E.M, et al./ MDPI Applied Sciences.

Nowadays, we’ve become pretty used to having 3D maps at our disposal, but this is a luxury we take for granted too easily. For the vast majority of our history, maps and urban imagery were restricted to 2D information.

A team of researchers led by Elisa Mariarosaria Farella from the Fondazione Bruno Kessler (FBK) in Trento, Italy, wanted to see how the height of buildings in historical maps can be inferred. They developed a machine learning algorithm that was first trained on sample data, and then asked it to predict buildings’ heights.

The algorithm’s assessment is based on several “predictors” — variables that are assumed to have some connection (not necessarily a direct or causal connection) to the objective (in this case, the building height). Researchers used things like a building area, its type (whether it was residential, historical, etc), its distance to other buildings, and so on.

They then ground-truthed the model predictions and finessed it with historical photos (where available) and improved mathematical algorithms, using four historical maps of Trento (years 1851, 1887, 1908, and 1936) and Bologna (years 1884 and 1945),

3D view of the inferred building heights (orange) with respect to the ground truth data (white) for the city of Trento. Despite metrics indicating acceptable accuracy, towers seem to produce the most anomalies. Image credits: Farella E.M, et al./ MDPI Applied Sciences.

Overall, the results were good, researchers write in the study.

“The reliability of the proposed approach was verified, testing the method on different datasets and epochs. The achieved results proved to be consistent with our accuracy targets and the complexity of such historical urban contexts. The implemented method is flexible and extendable, relying mainly on geometric and neighbour characteristics derivable from the datasets and adaptable categorical data.”

Image credits: Farella E.M, et al./ MDPI Applied Sciences.

They are now looking at ways to improve the process even further and generalize the method, which could make it much easier to digitize historical maps from all around the world and enhance them to 3D.

“The implemented learning and predictive procedure tested on historical data has proved to be effective and promising for many other applications. Based on few attributes for the prediction, it will soon be expanded to diverse real-life contexts with missing elevation data. The resulting models will be a great help in bridging the geospatial knowledge gap in past or remote situations” Emre Ozdemir, a Skoltech and FBK Trento PhD student, explains.

The study was published in MDPI Applied Sciences.

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.