homehome Home chatchat Notifications


Passive Wi-Fi uses 10,000 less energy and can power devices

University of Washington researchers want to flip Wi-Fi energy use upside down. They've invented a new protocol and technique that uses 10,000 less energy. The same signal can be used to power devices without the need of an external power source. Cameras, temperature or motion sensors can all be power and connected to the internet at the same time using 'passive Wi-Fi.'

Tibi Puiu
February 25, 2016 @ 1:06 pm

share Share

Wi-Fi use can account for up to 60 percent of the phone’s total energy consumption. Even if you aren’t actually connected to a network, having it on will drain a lot of energy because the device is constantly searching for a signal. University of Washington researchers want to flip Wi-Fi energy use upside down. They’ve invented a new protocol and technique that uses 10,000 less energy. The same signal can be used to power devices without the need of an external power source. Cameras, temperature or motion sensors can all be power and connected to the internet at the same time using ‘passive Wi-Fi.’

UW computer scientists and electrical engineers have generated “passive” Wi-Fi transmissions that use 10,000 times less power than current methods.University of Washington

UW computer scientists and electrical engineers have generated “passive” Wi-Fi transmissions that use 10,000 times less power than current methods.University of Washington

Wireless electricity is far from new, but getting a device to also communicate is a bit more challenging. The team showed that it’s possible to turn weak signals into power and also communicate through a process called backscattering. The gist is that an additional device is used to reflect incoming radio waves from a source, and it’s this reflected signal that’s picked up by the devices. This is how an RFID chip inside a contactless card works. But a key difference is the technology developed at University of Washington doesn’t need a special device to read the signal, as is the case of contactless cards.

For instance, one version of the tech developed by the researchers called ‘passive Wi-Fi’  lets battery-free gadgets connect with conventional devices such as computers and smartphones by backscattering Wi-Fi signals.

There’s a digital and analog side to radio transmission. While the digital side has become extremely energy efficient in the past two decades, the same can’t be said of the analog side. So, what the researchers did was effectively decouple the analog and the digital signals. The Passive Wi-Fi architecture assigns the analog, power-intensive functions – like producing a signal at a specific frequency — to a single device in the network that is plugged into the wall.

In Passive Wi-Fi, power-intensive functions are handled by a single device plugged into the wall. Passive sensors use almost no energy to communicate with routers, phones and other devices. Image: University of Washington

In Passive Wi-Fi, power-intensive functions are handled by a single device plugged into the wall. Passive sensors use almost no energy to communicate with routers, phones and other devices. Image: University of Washington

Next, an array of sensors produce  Wi-Fi packets of information using very little power by simply reflecting and absorbing that signal using a digital switch. Prototype passive Wi-Fi devices have transfered data as far as 100 feet and made connections through walls. Data was transferred at 11 megabits per second.

“All the networking, heavy-lifting and power-consuming pieces are done by the one plugged-in device,” said co-author Vamsi Talla, an electrical engineering doctoral student. “The passive devices are only reflecting to generate the Wi-Fi packets, which is a really energy-efficient way to communicate.”

“Our sensors can talk to any router, smartphone, tablet or other electronic device with a Wi-Fi chipset,” said co-author and electrical engineering doctoral student Bryce Kellogg. “The cool thing is that all these devices can decode the Wi-Fi packets we created using reflections so you don’t need specialized equipment.”

The system uses  10,000 times less energy than conventional methods, and uses a thousandth as much power as the Bluetooth LE and ZigBee communications standards.

“Even though so many homes already have Wi-Fi, it hasn’t been the best choice for that,” said co-author Joshua Smith, UW associate professor of computer science and engineering and of electrical engineering. “Now that we can achieve Wi-Fi for tens of microwatts of power and can do much better than both Bluetooth and ZigBee, you could now imagine using Wi-Fi for everything.”

Passive Wi-Fi was  named one of 10 breakthrough technologies of 2016 by MIT Technology Review.

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.