homehome Home chatchat Notifications


New circuitboard is 9,000 times faster and more energy efficient at simulating the human brain than PC

A mouse might not look like the smartest animal, but however modest its cortex may seem it’s still 9,000 times faster than a personal computer simulation of its functions. Not only that, but it takes 40,000 times more power to run – energy efficiency being, in fact, the true benchmark that needs to be considered when […]

Tibi Puiu
April 29, 2014 @ 11:58 am

share Share

The Neurogrid circuit board can simulate orders of magnitude more neurons and synapses than other brain mimics on the power it takes to run a tablet computer. Photo: Stanford

The Neurogrid circuit board can simulate orders of magnitude more neurons and synapses than other brain mimics on the power it takes to run a tablet computer. Photo: Stanford

A mouse might not look like the smartest animal, but however modest its cortex may seem it’s still 9,000 times faster than a personal computer simulation of its functions. Not only that, but it takes 40,000 times more power to run – energy efficiency being, in fact, the true benchmark that needs to be considered when comparing brains to computers. You can imagine what kind of complexity and challenges are faced by a computer trying to model the human brain. 

Exploiting biotechnology developed over the past 15 years, Stanford engineers have developed a novel circuitboard that is tuned to run simulations of the human brain with remarkable efficiency. According to the team, the circuitboard runs 9,000 times faster and uses significantly less power than a typical PC. Such technology could prove to be essential to future efforts involving human brain modeling, but a more practical and immediate use might be integration with smart prosthetic limbs that move and respond akin to a functioning, biological limb.

[READ] Bionic prosthetic allows disabled to run, climb and even dance – watch this TED talk!

Called the Neurogrid, the circuit board consists of 16 custom-designed “Neurocore” chips, which together simulate 1 million neurons and billions of synaptic connections. The computing density is so large that everything fits in a circuitboard the size of an iPad, but power efficiency wasn’t neglected either – the device simulates orders of magnitude more neurons and synapses than other brain mimics on the power it takes to run a tablet computer.

The Neurogrid costs about $40,000, but Kwabena Boahen, associate professor of bioengineering at Stanford, hopes that by scaling it to mass manufacturing, the price could go down to as low as $400, cheap enough maybe to be integrated with smart prosthetic. Add a compiler software to the equation (at the moment, a programmer needs to know neurology and how brain components act together to write a software for the Neurogrid), which will allow non-neuroscientists to write code for the board, and these neuromorphic systems could find numerous applications. Boahen envisions a Neurocore-like chip that could be implanted in a paralyzed person’s brain, interpreting those intended movements and translating them to commands for prosthetic limbs without overheating the brain. Efforts such as these are already in place at Boahen’s lab.

The researchers do not kid themselves, however. The challenges and work ahead of them are immense. In his article (Proceedings of the IEEE), Boahen notes that Neurogrid is about 100,000 times more energy efficient than a personal computer simulation of 1 million neurons. Yet it is an energy hog compared to our biological CPU.

“The human brain, with 80,000 times more neurons than Neurogrid, consumes only three times as much power,” Boahen writes. “Achieving this level of energy efficiency while offering greater configurability and scale is the ultimate challenge neuromorphic engineers face.”

share Share

The Brain May Make New Neurons in Adulthood and Even Old Age

Researchers identify the birthplace of new brain cells well into late adulthood.

Why a 20-Minute Nap Could Be Key to Unlocking 'Eureka!' Moments Like Salvador Dalí

A 20-minute nap can boost your chances of a creative breakthrough, according to new research.

Your Brain Could Reveal a Deadly Heart Risk. AI Is Learning to Read the Signs

By studying brain scans this AI model was able to differentiate between types of strokes with high accuracy.

This Star-Shaped Pill Stomach Could Transform Schizophrenia Treatment

A once-weekly oral capsule offers new hope for patients who struggle with daily medication.

Elon Musk says he wants to "fix" Grok after the AI disagrees with him

Grok exposed inconvenient facts. Now Musk says he’s “fixing” his AI to obey him.

The Rise of DIY Mental Health Tech: Can It Really Help with Anxiety?

Neurotech is almost ready to start helping us with anxiety.

Scientists Detect Light Traversing the Entire Human Head—Opening a Window to the Brain’s Deepest Regions

Researchers are challenging the limits of optical brain imaging.

Stanford's New Rice-Sized Device Destroys Clots Where Other Treatments Fail

Forget brute force—Stanford engineers are using finesse to tackle deadly clots.

Big Tech Said It Was Impossible to Create an AI Based on Ethically Sourced Data. These Researchers Proved Them Wrong

A massive AI breakthrough built entirely on public domain and open-licensed data

Lawyers are already citing fake, AI-generated cases and it's becoming a problem

Just in case you're wondering how society is dealing with AI.