homehome Home chatchat Notifications


New circuitboard is 9,000 times faster and more energy efficient at simulating the human brain than PC

A mouse might not look like the smartest animal, but however modest its cortex may seem it’s still 9,000 times faster than a personal computer simulation of its functions. Not only that, but it takes 40,000 times more power to run – energy efficiency being, in fact, the true benchmark that needs to be considered when […]

Tibi Puiu
April 29, 2014 @ 11:58 am

share Share

The Neurogrid circuit board can simulate orders of magnitude more neurons and synapses than other brain mimics on the power it takes to run a tablet computer. Photo: Stanford

The Neurogrid circuit board can simulate orders of magnitude more neurons and synapses than other brain mimics on the power it takes to run a tablet computer. Photo: Stanford

A mouse might not look like the smartest animal, but however modest its cortex may seem it’s still 9,000 times faster than a personal computer simulation of its functions. Not only that, but it takes 40,000 times more power to run – energy efficiency being, in fact, the true benchmark that needs to be considered when comparing brains to computers. You can imagine what kind of complexity and challenges are faced by a computer trying to model the human brain. 

Exploiting biotechnology developed over the past 15 years, Stanford engineers have developed a novel circuitboard that is tuned to run simulations of the human brain with remarkable efficiency. According to the team, the circuitboard runs 9,000 times faster and uses significantly less power than a typical PC. Such technology could prove to be essential to future efforts involving human brain modeling, but a more practical and immediate use might be integration with smart prosthetic limbs that move and respond akin to a functioning, biological limb.

[READ] Bionic prosthetic allows disabled to run, climb and even dance – watch this TED talk!

Called the Neurogrid, the circuit board consists of 16 custom-designed “Neurocore” chips, which together simulate 1 million neurons and billions of synaptic connections. The computing density is so large that everything fits in a circuitboard the size of an iPad, but power efficiency wasn’t neglected either – the device simulates orders of magnitude more neurons and synapses than other brain mimics on the power it takes to run a tablet computer.

The Neurogrid costs about $40,000, but Kwabena Boahen, associate professor of bioengineering at Stanford, hopes that by scaling it to mass manufacturing, the price could go down to as low as $400, cheap enough maybe to be integrated with smart prosthetic. Add a compiler software to the equation (at the moment, a programmer needs to know neurology and how brain components act together to write a software for the Neurogrid), which will allow non-neuroscientists to write code for the board, and these neuromorphic systems could find numerous applications. Boahen envisions a Neurocore-like chip that could be implanted in a paralyzed person’s brain, interpreting those intended movements and translating them to commands for prosthetic limbs without overheating the brain. Efforts such as these are already in place at Boahen’s lab.

The researchers do not kid themselves, however. The challenges and work ahead of them are immense. In his article (Proceedings of the IEEE), Boahen notes that Neurogrid is about 100,000 times more energy efficient than a personal computer simulation of 1 million neurons. Yet it is an energy hog compared to our biological CPU.

“The human brain, with 80,000 times more neurons than Neurogrid, consumes only three times as much power,” Boahen writes. “Achieving this level of energy efficiency while offering greater configurability and scale is the ultimate challenge neuromorphic engineers face.”

share Share

AI thought X-rays are connected to eating refried beans or drinking beer

Instead of finding true medical insights, these algorithms sometimes rely on irrelevant factors — leading to misleading results.

AI is scheming to stay online — and then lying to humans

An alarming third party report almost looks like a prequel to Terminator.

Reading Actually Reshapes Your Brain — Here’s How It Changes Your Mind

Reading can change the brain.

If You Need Only 4 Hours of Sleep, You Might Have This Rare Genetic Mutation

Short sleepers cruise by on four to six hours a night and don’t seem to suffer ill effects. Turns out they’re genetically built to require less sleep than the rest of us.

Can You Tell Which Knot Is Strongest? Most People Fail This Surprisingly Tough Challenge

Knots are a test of physical intuition and most of us are failing hard.

The sound of traffic really has a negative impact on you

A new study reveals how urban noise pollutes more than just the environment — it affects our mood and mental health.

Scientists uncover how quality sleep may be key to learning a new language

If you needed another reason to get a good night's sleep — here it is.

Axons Look Like “Pearls on a String” in Discovery That Could Rewrite Biology

We thought we knew what neurons looked like. Guess again.

The David Mayer case: ChatGPT refuses to say some names. We have an idea why

Who are David Mayer and Brian Hood?

Coffee could help you live a longer, healthier life — in moderation

Your morning cup of coffee might be doing more than waking you up—it could be adding years to your life and protecting you from age-related diseases.