homehome Home chatchat Notifications


GE engineers 3D print mini jet engine, then power it to 33,000 RPMs

Printing your own mechanical parts or toys is really easy, not to mention fun, using a 3-D printer. But things get a bit trickier when you want to print the kind of parts that go into a car or airplane. Metal is a lot more complex to work with inside a 3D printer than polymers like ABS - the kind of film roles that get melted layer by layer to form a part of your liking once it cools down. Engineers at General Electric just demonstrated, however, that in practice it's not that complicated to print parts out of metal alloys as it sounds. The team used additive technology to build a fully functional jet engine, then test powered it to 33,000 RPMs. The company is already using 3-D printed fuel nozzles in its next-generation aircraft engines, slated to role out in 2016.

Tibi Puiu
May 14, 2015 @ 8:28 am

share Share

3d printing

Printing your own mechanical parts or toys is really easy, not to mention fun, using a 3-D printer. But things get a bit trickier when you want to print the kind of parts that go into a car or airplane. Metal is a lot more complex to work with inside a 3D printer than polymers like ABS – the kind of film roles that get melted layer by layer to form a part of your liking once it cools down. Engineers at General Electric just demonstrated, however, that in practice it’s not that complicated to print parts out of metal alloys as it sounds. The team used additive technology to build a fully functional jet engine, then test powered it to 33,000 RPMs. The company is already using 3-D printed fuel nozzles in its next-generation aircraft engines, slated to role out in 2016.

3d printing metal tech

“We wanted to see if we could build a little engine that runs almost entirely out of additive manufacturing parts,” says one of the engineers. “This was a fun side project.”

The GE team planned, designed and built the engine over the course of a couple of years, in their spare time off from their main projects. In their lab at the GE Aviation’s Additive Development Center outside Cincinnati, they employed a next-generation technique that can make complex 3D structures by melting metal powder layer upon layer.

All these metal parts were 3D printed, then polished. Image: GE Aviation

All these metal parts were 3D printed, then polished. Image: GE Aviation

An airplane’s jet engine is of massive complexity, costs millions of dollars and involves hundreds of man hours to assemble. Since this was their first test run, the team tackled a much simpler design. They found the plans for an engine typically used in remote controlled model airplanes and adapted it for 3D printing. Each part was printed, polished then put in assembly; the final product measured  a foot long by about eight inches tall. They then mounted some control sensors, like those that measure exhaust gases, and put the engine inside a test cell that’s typically used to gauge performance for large-scale engines. They fired it up to 33,000 RPMs, showing that the part doesn’t break. The General Electric press release doesn’t specify however how many cycles the mini jet engine was subjected to.

GE aviation

Parts are typically made by casting or through traditional machine methods that cut parts out of larger pieces. The GE technique uses a laser and powdered metal to fuse new parts, layer by layer. The resulting parts can be made using much more complex geometries and different alloys unavailable otherwise. It also cuts material waste, but not necessarily expenses per part since this is still a fledgling technology.

“There are really a lot of benefits to building things through additive,” says Matt Benvie, spokesman for GE Aviation. “You get speed because there’s less need for tooling and you go right from a model or idea to making a part. You can also get geometries that just can’t be made any other way.”

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.