homehome Home chatchat Notifications


Scientists demonstrate full working biodegradable wooden chips. No, the electronic kind

Researchers at the University of Wisconsin-Madison designed an innovate and sustainable solution to the global electronic waste problem: make the substrate of computer chips out of cellulose nanofibril (CNF), a biodegradable material from wood. The team collaborated with the the Madison-based U.S. Department of Agriculture Forest Products Laboratory (FPL) to build their device.

Tibi Puiu
June 3, 2015 @ 10:24 am

share Share

Researchers at the University of Wisconsin-Madison designed an innovate and sustainable solution to the global electronic waste problem: make the substrate of computer chips out of cellulose nanofibril (CNF), a biodegradable material from wood. The team collaborated with the the Madison-based U.S. Department of Agriculture Forest Products Laboratory (FPL) to build their device.

A cellulose nanofibril (CNF) computer chip rests on a leaf. Photo: Yei Hwan Jung, Wisconsin Nano Engineering Device Laboratory

A cellulose nanofibril (CNF) computer chip rests on a leaf. Photo: Yei Hwan Jung, Wisconsin Nano Engineering Device Laboratory

On average, cell phones are used for less than 18 months and computers are used for some 3 years before being replaced. But very few end up getting recycled, in part because there’s little awareness on the subject, part lack of facilities. Not to mention how prohibitively expensive it can be to extract the toxic semiconductors that makeup the devices, like gallium arsenide (GaAs). So, most electronics end up in the landfill, polluting the environment and expanding demand for further landfill space.

Wood is plentiful and biodegradable, so why not chop some good ol’ chips? Trust me, I was as skeptical as you at this point until I read the paper (Nature). According to the researchers at UW, the active region of a typical computer chip is only a thin layer atop a bulk support which consists of more than 99% of the semiconductor material. This huge bottom layer relative to the top layer is basically used only to carry non-active components. As such, it can be replaced with just about any material, in this case a favorable biodegradable one, granted chip operation isn’t affected.

“The majority of material in a chip is support. We only use less than a couple of micrometers for everything else,” says UW-Madison electrical and computer engineering professor Zhenqiang “Jack” Ma. “Now the chips are so safe you can put them in the forest and fungus will degrade it. They become as safe as fertilizer.”

How about that – electronic fertilizer. You definitely don’t hear that every day. Naturally though the researchers didn’t build a chip atop of a wooden plank. First, the researchers had to breach two key barriers when dealing with wood-derived materials in an electronics setting: surface smoothness and thermal expansion. In the end, they found an elegant solution by coating the CNF layers with a special solution.

“You don’t want it to expand or shrink too much. Wood is a natural hydroscopic material and could attract moisture from the air and expand,” Zhiyong Cai, project leader for an engineering composite science research group at FPL. “With an epoxy coating on the surface of the CNF, we solved both the surface smoothness and the moisture barrier.”

With over a decade of experience working with CNF, the researchers are confident in their design. They say it can also be easily adapted to current manufacturing technology.

“The advantage of CNF over other polymers is that it’s a bio-based material and most other polymers are petroleum-based polymers. Bio-based materials are sustainable, bio-compatible and biodegradable,” Gong says. “And, compared to other polymers, CNF actually has a relatively low thermal expansion coefficient.”

Yei Hwan Jung, a graduate student in electrical and computer engineering and a co-author of the paper, says the new process greatly reduces the use of such expensive and potentially toxic material.

“I’ve made 1,500 gallium arsenide transistors in a 5-by-6 millimeter chip. Typically for a microwave chip that size, there are only eight to 40 transistors. The rest of the area is just wasted,” he says. “We take our design and put it on CNF using deterministic assembly technique, then we can put it wherever we want and make a completely functional circuit with performance comparable to existing chips.”

 

share Share

Researchers Turn 'Moon Dust' Into Solar Panels That Could Power Future Space Cities

"Moonglass" could one day keep the lights on.

Ford Pinto used to be the classic example of a dangerous car. The Cybertruck is worse

Is the Cybertruck bound to be worse than the infamous Pinto?

Archaeologists Find Neanderthal Stone Tool Technology in China

A surprising cache of stone tools unearthed in China closely resembles Neanderthal tech from Ice Age Europe.

A Software Engineer Created a PDF Bigger Than the Universe and Yes It's Real

Forget country-sized PDFs — someone just made one bigger than the universe.

The World's Tiniest Pacemaker is Smaller Than a Grain of Rice. It's Injected with a Syringe and Works using Light

This new pacemaker is so small doctors could inject it directly into your heart.

Scientists Just Made Cement 17x Tougher — By Looking at Seashells

Cement is a carbon monster — but scientists are taking a cue from seashells to make it tougher, safer, and greener.

Three Secret Russian Satellites Moved Strangely in Orbit and Then Dropped an Unidentified Object

We may be witnessing a glimpse into space warfare.

Researchers Say They’ve Solved One of the Most Annoying Flaws in AI Art

A new method that could finally fix the bizarre distortions in AI-generated images when they're anything but square.

The small town in Germany where both the car and the bicycle were invented

In the quiet German town of Mannheim, two radical inventions—the bicycle and the automobile—took their first wobbly rides and forever changed how the world moves.

Scientists Created a Chymeric Mouse Using Billion-Year-Old Genes That Predate Animals

A mouse was born using prehistoric genes and the results could transform regenerative medicine.