homehome Home chatchat Notifications


Artificial Intelligence can tell you your blood pressure, age, and smoking status -- just by looking at your eye

The eyes can also be a window into a person's health.

Mihai Andrei
January 5, 2018 @ 7:15 pm

share Share

Eyes are said to be the window to the soul, but according to Google engineers, they’re also the window to your health.

The engineers wanted to see if they could determine some cardiovascular risks simply by looking a picture of someone’s retina. They developed a convolutional neural network — a feed-forward algorithm inspired by biological processes, especially pattern between neurons, commonly used in image analysis.

This type of artificial intelligence (AI) analyzes images holistically, without splitting them into smaller pieces, based on their shared similarities and symmetrical parts.

The approach became quite popular in recent years, especially as Facebook and other tech giants began developing their face-recognition software. Scientists have long proposed that this type of network can be used in other fields, but due to the innate processing complexity, progress has been slow. The fact that such algorithms can be applied to biology (and human biology, at that) is astonishing.

“It was unrealistic to apply machine learning to many areas of biology before,” says Philip Nelson, a director of engineering at Google Research in Mountain View, California. “Now you can — but even more exciting, machines can now see things that humans might not have seen before.”

Observing and quantifying associations in images can be difficult because of the wide variety of features, patterns, colors, values, and shapes in real data. In this case, Ryan Poplin, Machine Learning Technical Lead at Google, used AI trained on data from 284,335 patients. He and his colleagues then tested their neural network on two independent datasets of 12,026 and 999 photos respectively. They were able to predict age (within 3.26 years), and within an acceptable margin, gender, smoking status, systolic blood pressure as well as major adverse cardiac events. Researchers say results were similar to the European SCORE system, a test which relies on a blood test.

To make things even more interesting, the algorithm uses distinct aspects of the anatomy to generate each prediction, such as the optic disc or blood vessels. This means that, in time, each individual detection pattern can be improved and tailored for a specific purpose. Also, a data set of almost 300,000 models is relatively small for a neural network, so feeding more data into the algorithm can almost certainly improve it.

Doctors today rely heavily on blood tests to determine cardiovascular risks, so having a non-invasive alternative could save a lot of costs and time, while making visits to the doctor less unpleasant. Of course, for Google (or rather Google’s parent company, Alphabet), developing such an algorithm would be a significant development and a potentially profitable one at that.

It’s not the first time Google engineers have dipped their feet into this type of technology — one of the authors, Lily Peng, published another paper last year in which she used AI to detect blindness associated with diabetes.

Journal Reference: Ryan Poplin et al. Predicting Cardiovascular Risk Factors from Retinal Fundus Photographs using Deep Learning.  arXiv:1708.09843

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.