homehome Home chatchat Notifications


Researchers open hairy new chapter in 3-D printing

You just can't brush off this technology.

Mihai Andrei
June 20, 2016 @ 4:33 pm

share Share

With fur and brushes, a team of researchers is opening a new chapter for 3D printing – a rather hairy one.

Image courtesy of Tangible Media Group / MIT Media Lab.

By now, it seems that 3D printing can do pretty much everything. It can create a car, revolutionize prosthetics, even create better ceramics. But there was one field in which 3D printing was just shy to explore: things with very fine elements, like brushes or fur.

The main problem in this case isn’t the printing itself, but rather the required processing power. Computation time can be huge when it comes to fine details, and the power demand is also considerable. Now, researchers at MIT’s Media Lab have found a way to bypass a major design step in 3-D printing, creating efficient models and printing thousands of hair-like structures.

The main innovation was giving up on conventional computer-aided design (CAD) software to draw thousands of individual hairs on a computer, a process which would take hours to compute, instead building a different software platform.

Their new platform, “Cilllia,” lets users define the angle, thickness, density, and height of thousands of hairs, in just a few minutes. They used it to design arrays of hair-like structures with a resolution of 50 microns — about the width of a human hair. They toyed around with the size, demonstrating that their solution has the flexibility to create arrays ranging from coarse bristles to fine fur, onto flat and also curved surfaces, and all this using a conventional 3D printer.

Jifei Ou, a graduate student in media arts and sciences and the lead author of the new paper, was thrilled.

“It’s very inspiring to see how these structures occur in nature and how they can achieve different functions,” Ou says. “We’re just trying to think how can we fully utilize the potential of 3-D printing, and create new functional materials whose properties are easily tunable and controllable.”

The technique itself is not extremely complicated. The hairs are simply designed as cones, with fewer and fewer pixels the higher you go. To change the hair’s dimensions, such as its height, angle, and width, you simply change the distribution of the pixels. This also makes the whole thing much more scalable.

After this step was done, printing the hairs on a flat surface was quite easy, but printing on curved surfaces proved much trickier. That obstacle too was overcome.

“With our method, everything becomes smooth and fast,” Ou says. “Previously it was virtually impossible, because who’s going to take a whole day to render a whole furry rabbit, and then take another day to make it printable?”

The potential applications are considerable, ranging from toys to sensors. The team demonstrated the former by creating a toy rabbit, but the latter is probably more interesting.

“The ability to fabricate customized hair-like structures not only expands the library of 3-D-printable shapes, but also enables us to design alternative actuators and sensors,” the authors conclude in their paper. “3-D-printed hair can be used for designing everyday interactive objects.”

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.