homehome Home chatchat Notifications


New 3D printing technique offers strong, intricate ceramics

Researchers have developed a new technique that allows them to create ceramics with 3D printing faster and cheaper, incorporating complex shapes.

Mihai Andrei
January 4, 2016 @ 5:27 pm

share Share

Researchers have developed a new technique that allows them to create ceramics with 3D printing faster and cheaper, incorporating complex shapes.

This image shows a ceramic spiral created by the additive manufacturing process. This material relates to a paper that appeared in the Jan. 1, 2016 issue of Science, published by AAAS. The paper, by Z.C. Eckel at HRL Laboratories in Malibu, CA, and colleagues was titled, “Additive manufacturing of polymer-derived ceramics.” Credit: HRL Labs.

Ceramics and 3D printing don’t play nice together. Ceramics are strong, robust and have spectacular thermal properties, but unlike polymers and some metals, ceramic particles don’t fuse together when heated – which means that conventional 3D printing doesn’t work with them.

The few 3D printers for ceramics that had been developed work very slowly, at high temperatures, and cause some porosity which renders the material more vulnerable to cracking; a team from HRL Laboratories in Malibu, California wanted something else – something better.

“3D printing is a very important new capability, but so far, most materials that can be printed are not high-performance engineering materials,” said study co-author Tobias Schaedler, a materials scientist at HRL Laboratories in Malibu, California. “We wanted to figure out 3D printing of a high-temperature, high-strength ceramic.”

Image via Gizmodo.

He and his team have found a new way to 3D print ceramics, using a special resin instead of powders. This not only allows the creation of less porous materials, but also enables scientists to create complex, intricate structures with relative ease. The new method is also over 100 times faster than previous techniques and creates ceramics 10 times stronger that can withstand temperatures of 1,400⁰ Celsius (2552⁰ Fahrenheit) before experiencing any damage.

Because of their success, the team is already considering applications for building components for jet engines and supersonic planes, but it will take another few more years before then can actually implement this ceramic in any products.

“We are at the discovery phase. It will take at least five years for an application to be commercialized,” Schaedler said.

Journal Reference.

share Share

The World's Tiniest Pacemaker is Smaller Than a Grain of Rice. It's Injected with a Syringe and Works using Light

This new pacemaker is so small doctors could inject it directly into your heart.

Scientists Just Made Cement 17x Tougher — By Looking at Seashells

Cement is a carbon monster — but scientists are taking a cue from seashells to make it tougher, safer, and greener.

Three Secret Russian Satellites Moved Strangely in Orbit and Then Dropped an Unidentified Object

We may be witnessing a glimpse into space warfare.

Researchers Say They’ve Solved One of the Most Annoying Flaws in AI Art

A new method that could finally fix the bizarre distortions in AI-generated images when they're anything but square.

The small town in Germany where both the car and the bicycle were invented

In the quiet German town of Mannheim, two radical inventions—the bicycle and the automobile—took their first wobbly rides and forever changed how the world moves.

Scientists Created a Chymeric Mouse Using Billion-Year-Old Genes That Predate Animals

A mouse was born using prehistoric genes and the results could transform regenerative medicine.

Americans Will Spend 6.5 Billion Hours on Filing Taxes This Year and It’s Costing Them Big

The hidden cost of filing taxes is worse than you think.

Underwater Tool Use: These Rainbow-Colored Fish Smash Shells With Rocks

Wrasse fish crack open shells with rocks in behavior once thought exclusive to mammals and birds.

This strange rock on Mars is forcing us to rethink the Red Planet’s history

A strange rock covered in tiny spheres may hold secrets to Mars’ watery — or fiery — past.

Scientists Found a 380-Million-Year-Old Trick in Velvet Worm Slime That Could Lead To Recyclable Bioplastic

Velvet worm slime could offer a solution to our plastic waste problem.