homehome Home chatchat Notifications


Super-earth planets might have a magnetic field from liquid metals

Of the hundreds of exoplanets discovered thus far, many of them are classed as super-Earths, planets with a mass up to ten times that of our planet. Due to their inherent different structure however, their cores would be far from being similar to that of the Earth, leading many scientist to claim that they might […]

Tibi Puiu
November 23, 2012 @ 10:52 am

share Share

Super Earth planet

Of the hundreds of exoplanets discovered thus far, many of them are classed as super-Earths, planets with a mass up to ten times that of our planet. Due to their inherent different structure however, their cores would be far from being similar to that of the Earth, leading many scientist to claim that they might not have a magnetic field. A team of researchers  University of Rochester has shown, however, that a flowing liquid metal might generate magnetic dynamos in super-Earths.

While our planet’s atmosphere is rather thick, it is not at the front line in the war against deadly cosmic radiation. This role is played by the sheltering magnetic field that fends off radiation and makes the Earth a paradise for life. This magnetic field – and that of Mercury, the only other rocky planet known to have a magnetic field – stems from the constant motion of its molten iron core.

Super-Earths on the other hand, because of their extreme mass, would present large viscosities and high melting temperatures at their core. This means that they can’t support a magnetic field.

That is, as the researchers very well put it, if you apply what you know about the Earth to other planets as well. This process of reason works in most cases, however when dealing with totally alien environments, phenomenons that don’t occur in our own back yard might escape scientists.

“For many decades we have usually imagined terrestrial planets — the Earth, its neighbors such as Mars, and distant super-Earths — as all having Earth-like properties: that is, they have a outer shell or mantle composed of nonmetallic oxides, and an iron rich core which is metallic and from which planetary magnetic fields originate,” said R. Stewart McWilliams, a geophysicist at the Carnegie Institution of Washington.

“This rule is central to our thinking about super-Earths, yet it is clearly anthropocentric — that is, we are applying what we know from our own observations on Earth to remote planets for which we can observe very little — and, as for many anthropocentric ideas, we are finding that more imagination is needed to understand such alien worlds.”

Extreme conditions at the core of super-Earths

The researchers  found the magnesium oxide, a common ceramic material found on Earth, can transform into liquid when subjected to the extreme conditions such as those found in the interior of super-Earths. Magnesium’s highly resistant to changes when under intense pressures and temperature, and theoretical predictions claim that it has just three unique states with different structures and properties present under planetary conditions.

To see how the material might perform in extreme conditions on alien worlds, the researchers aimed a high-pulsating laser, that shoots beams in just a billionth of a second, to heat a magnesium oxide sample to temperatures as high as 90,000 degrees Fahrenheit (50,000 Celsius), also squeezing it in the process to pressures 14 million times that of normal Earth atmospheric pressure.   They watched this rocky substance change to a solid with a new crystal structure, and finally into a liquid metal. In the melting process, the material changes its properties radically, going from an electrical insulator into a material that allows electrons to flow easily through it, allowing a magnetic field to form.

“Our results show that the usual assumption that planetary magnetic fields originate exclusively in iron cores is too limiting,” McWilliams said. “Magnetic fields might also form within planetary mantles. In fact, this idea has been speculated on for decades, but now we have hard data to show that, indeed, such a ‘mantle-dynamo’ is plausible.”

Previous theories regarding magnesium oxide said that the material may exist in only three states with different structures and properties present under planetary conditions –  solid under ambient conditions (such as on the Earth’s surface), liquid at high temperatures, and another form of solid at high pressure . This last structure had never been observed until now.

The implications of these findings suggest that the metallic, liquid phase of magnesium oxide could well exist today in the deep mantles of super-Earth planets, as well as the newly-observed solid phase. This means that they might very well harbor a magnetic field which might protect its surface from radiation and allow life to blossom.

“It is often said that life on planets may require the presence of a strong magnetic field to protect organisms from dangerous radiation from space such as cosmic rays — at least this may be true for certain types of life, similar to humans, that live on a planet’s surface,” McWilliams said. “We find that magnetic fields may occur on a wider range of planets than previously thought, possibly creating unexpected environments for life in the universe.”

“Everyone, both scientists and the public, should keep in mind that super-Earths are, and probably will remain for some time, a big mystery,” McWilliams said. “It is easy to speculate as to their properties — to draw a picture of one, for example — but quite difficult to make certain conclusions such as we have for our own Earth. This is both exciting and daunting — there are many possibilities to explore, but scientists have much work to do. We hope the public has a lot of patience.”

Findings were reported in the journal Science.

 

share Share

Three Secret Russian Satellites Moved Strangely in Orbit and Then Dropped an Unidentified Object

We may be witnessing a glimpse into space warfare.

This strange rock on Mars is forcing us to rethink the Red Planet’s history

A strange rock covered in tiny spheres may hold secrets to Mars’ watery — or fiery — past.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.

The most successful space telescope you never heard of just shut down

An astronomer says goodbye to Gaia, the satellite that mapped the galaxy.

Astronauts are about to grow mushrooms in space for the first time. It could help us live on Mars

Mushrooms could become the ultimate food for living in colonies on the moon and Mars.

Earth’s Longest Volcanic Ridge May Be an Underwater Moving Hotspot

Scientists uncover surprising evidence that the Kerguelen hotspot, responsible for the 5,000-kilometer-long Ninetyeast Ridge, exhibited significant motion.

Dark Energy Might Be Fading and That Could Flip the Universe’s Fate

Astronomers discover hints that the force driving cosmic expansion could be fading

Curiosity Just Found Mars' Biggest Organic Molecules Yet. It Could Be A Sign of Life

The discovery of long-chain organic compounds in a 3.7-billion-year-old rock raises new questions about the Red Planet’s past habitability.

Astronomers Just Found Oxygen in a Galaxy Born Only 300 Million Years After the Big Bang

The JWST once again proves it might have been worth the money.

New NASA satellite mapped the oceans like never before

We know more about our Moon and Mars than the bottom of our oceans.