ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Health → Diseases

Sugar-coated scaffolding guides and differentiates stem cells

Tibi PuiubyTibi Puiu
February 26, 2013
in Diseases, Research
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

3D printing stem cells could be used one day to ‘manufacture’ organs
How aging can be cured in the future – a scientist’s view
Mice with multiple sclerosis walk and run again after human stem cell treatment
Human Embryonic Stem Cell Lines Created Without The Destruction Of Embryos

One of the miracles of modern day medicine science, stem cells, are regarded by scientists as the basic building blocks for devising treatments, cures or transplants for some of today’s yet incurable diseases like Alzheimer or diabetes. The biggest hurdle researchers face is differentiating stem cells so that they may grow into a specific type of cell. Researchers at Manchester University may have come across a breakthrough in leaping this particular issue after they used sugar-coated scaffolds to guide embryonic stem cells so that they may develop into specific types of somatic cells.

Scientists have used sugar-coated scaffolding to move a step closer to the routine use of stem cells in the clinic and unlock their huge potential to cure diseases from Alzheimer’s to diabetes. (c) University of Manchester
Scientists have used sugar-coated scaffolding to move a step closer to the routine use of stem cells in the clinic and unlock their huge potential to cure diseases from Alzheimer’s to diabetes. (c) University of Manchester

The web-like biomaterial is made out of sugar molecules using a technique called electrospinning, which employs an electrical charge to draw very tiny fibres from a liquid, mimicking structures that occur in nature. These long, linear sugar molecules or meshes have shown in previous research that play a fundamental role in stem cell transformation and regulation of behavior. This combination of sugar molecules with the fibre web, provides both biochemical and structural signals which guide ESCs into becoming specific types of somatic cells.

Lead author Dr Catherine Merry, from Manchester’s Stem Cell Glycobiology group, said: “These meshes have been modified with long, linear sugar molecules, which we have previously shown play a fundamental role in regulating the behaviour of stem cells. By combining the sugar molecules with the fibre web, we hoped to use both biochemical and structural signals to guide the behaviour of stem cells, in a similar way to that used naturally by the body. This is the Holy Grail of research into developing new therapeutics using stem cell technology.”

Whether the Holy Grail claim is a worthy assumption, that remains to be seen. What’s certain is that if the researchers’ technique can be scaled, a range of applications might be opened up for it from tissue engineering, where the meshes could support cells differentiating to form bone, liver or blood vessels, and much more. The meshes also have potential therapeutic implications in the treatment of diseases such as multiple osteochondroma (MO), a rare disease creating bony spurs or lumps caused by abnormal production of these sugar molecules.

Co-author Professor Tony Day, from Manchester’s Wellcome Trust Centre for Cell-Matrix Research, said: “This cross-faculty collaboration provides exciting new possibilities for how we might harness the adhesive interactions of extracellular matrix to manipulate stem cell behaviour and realise their full therapeutic potential.”

Findings were published in the Journal of Biological Chemistry.

Tags: embryonic stem cellssomatic cellsstem cells

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Health

First Stem Cell Nerve Therapy Meant to Reverse Paralysis Enters Clinical Trial

byTibi Puiu
1 month ago
Neurology

Japan’s Stem Cell Scientists Claim Breakthrough in Parkinson’s Treatment

byMihai Andrei
2 months ago
Animals

Humans are really bad at healing. But that also helped us survive

byTudor Tarita
2 months ago
Health

“I can eat sugar now”: Stem Cells Reverse Woman’s Type 1 Diabetes in Medical First. Is a Cure Finally In Sight?

byTibi Puiu
9 months ago

Recent news

Tennis May Add Nearly 10 Years to Your Life and Most People Are Ignoring It

July 4, 2025

Humans Have Been Reshaping Earth with Fire for at Least 50,000 Years

July 4, 2025

The Strangest Microbe Ever Found Straddles The Line Between Life and Non-Life

July 4, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.