homehome Home chatchat Notifications


New method allows visualizing of protein self-assembly - paves way for nanotech against diseases

Be it a bacteria or a fully complex being, say a human, all living, biological organisms undergo lighting fast protein structure reassembly in response to environmnetal stimuli. For instance,  receptor proteins in the sinus are stimulated by various odor molecules, basically telling the organism that there’s food nearby or it’s in the vicinity of danger (sulphur, methane, […]

Tibi Puiu
June 12, 2012 @ 10:23 am

share Share

Be it a bacteria or a fully complex being, say a human, all living, biological organisms undergo lighting fast protein structure reassembly in response to environmnetal stimuli. For instance,  receptor proteins in the sinus are stimulated by various odor molecules, basically telling the organism that there’s food nearby or it’s in the vicinity of danger (sulphur, methane, noxious fumes). By studying these mechanisms, scientists can better understand these process. A great leap further in the field was achieved by researchers at  the University of Montreal, who’ve managed to image how proteins self-assemble.

Protein re-assembly

Here shown are two different assembly stages (purple and red) of the protein ubiquitin and the fluorescent probe used to visualize these stage (tryptophan: see yellow). Credit: Peter Allen.

Understanding and mapping these process helps pave a broader, more plastic picture of how organisms function from a molecular assembly mechanism point of view, but maybe most importantly aids in pinpointing assembly errors. Both Alzheimer’s and Parkinson’s, two of the most devastating neural degenerative disease currently plaguing mankind, are caused by errors in molecular assembly. According to Professor Stephen Michnick, the research is expected to help bioengineers design new molecular machines for nanotechnology applications which might fight these diseases.

“In order to survive, all creatures, from bacteria to humans, monitor and transform their environments using small protein nanomachines made of thousands of atoms,” explained Michnick.

Proteins are composed of linear structural chains of amino acids, which have the capability to self assemble at the rate of thousandth of a second into a nanomachine by virtue of millions of years of evolution. Determining how these proteins self-assemble is a crucial goal in biotechnology at the moment, however, this extremely fast assembly velocity, as well as the numerous possible combinations, makes it extremely difficult.

“One of the main challenges for biochemists is to understand how these linear chains assemble into their correct structure given an astronomically large number of other possible forms,” Michnick said.

Researcher Dr. Alexis Vallée-Bélisle expressed similar sentiments.

“To understand how a protein goes from a linear chain to a unique assembled structure, we need to capture snapshots of its shape at each stage of assembly,” Vallée-Bélisle noted.

The researchers sought to overcome these setbacks, and successfully established a new method for visualizing the process of protein assembly by attaching fluorescent probes at all points on the linear protein chain.

“The problem is that each step exists for a fleetingly short time and no available technique enables us to obtain precise structural information on these states within such a small time frame. We developed a strategy to monitor protein assembly by integrating fluorescent probes throughout the linear protein chain so that we could detect the structure of each stage of protein assembly, step by step to its final structure.”

However, Vallée-Bélisle emphasized that the protein assembly process “is not the end of its journey,” as a protein can change, via chemical modifications or with age, to take on different forms and functions.

“Understanding how a protein goes from being one thing to becoming another is the first step towards understanding and designing protein nanomachines for biotechnologies such as medical and environmental diagnostic sensors, drug synthesis of delivery,” he added.

The research is funded by Le fond de recherché du Québec, Nature et Technologie and the Natural Sciences and Engineering Research Council of Canada. The findings were published in the journal Nature Structural & Molecular Biology.

source: U Montreal.

share Share

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

Mysterious "Disease X" identified as aggressive strain of malaria

The mystery of this Disease X seems to have been solved. Now to develop an approach to handling it.

Bird Flu Strikes Again: Severe Case Confirmed in the US. Here's what you need to know

Bird flu continues to loom as a global threat. A severe case in Louisiana is the latest development in a series of concerning H5N1 outbreaks.

These "Ants" Use Ultrablack to Warn Predators — and Stay Cool

Velvet ants, actually flightless wasps, boast an ultrablack exoskeleton thanks to dense nanostructures.

Scientists Discover a Surprising Side Effect of Intermittent Fasting — Slower Hair Regrowth

Fasting benefits metabolism but may hinder hair regeneration, at least in mice.

Origami-Inspired Heart Valve May Revolutionize Treatment for Toddlers

A team of researchers at UC Irvine has developed an origami-inspired heart valve that grows with toddlers.

Depression Risk Surges by 40% During Perimenopause, New Study Reveals

Women in the perimenopause stage are 40% more likely to experience depression compared to those who aren’t undergoing menopausal changes, according to a new study led by researchers at University College London (UCL). This research, published in the Journal of Affective Disorders, draws on data from over 9,000 women across the globe and underscores an […]

Scientists Call for a Global Pause on Creating “Mirror Life” Before It’s Too Late: “The threat we’re talking about is unprecedented”

Creating synthetic lifeforms is almost here, and the consequences could be devastating.