homehome Home chatchat Notifications


The Milky Way is surrounded by a huge, hot halo of gas

Recent measurements conducted by NASA’s Chandra X-ray Observatory, and observed by other X-ray instruments from around world and in space, suggest that our galaxy is surrounded by hot spherical gas formation that stretches across 300,000 light years and has an equivalent mass of some 60 billion suns or roughly all the stars in the Milky Way. If […]

Tibi Puiu
September 24, 2012 @ 3:05 pm

share Share

Recent measurements conducted by NASA’s Chandra X-ray Observatory, and observed by other X-ray instruments from around world and in space, suggest that our galaxy is surrounded by hot spherical gas formation that stretches across 300,000 light years and has an equivalent mass of some 60 billion suns or roughly all the stars in the Milky Way. If these findings are indeed confirmed then they might provide a valid explanation for the “missing baryon” problem.

This artist's illustration shows an enormous halo of hot gas (in blue) around the Milky Way galaxy. Also shown, to the lower left of the Milky Way, are the Small and Large Magellanic Clouds, two small neighboring galaxies. The halo of gas is shown with a radius of about 300,000 light years, although it may extend significantly further. (c) NASA

This artist’s illustration shows an enormous halo of hot gas (in blue) around the Milky Way galaxy. Also shown, to the lower left of the Milky Way, are the Small and Large Magellanic Clouds, two small neighboring galaxies. The halo of gas is shown with a radius of about 300,000 light years, although it may extend significantly further. (c) NASA

This highly important find occurred while scientists were studying bright x-ray sources located millions of light years away and observed that oxygen ions in the immediate vicinity of our galaxy were oddly “selectively absorbing” some of the x-rays. This oddity was also picked up by the European Space Agency’s XMM-Newton space observatory and Japan’s Suzaku satellite.

Using these measurements, the astronomers were able to set limits on the temperature, extent and mass of the hot gas halo. Thus, they determined  the temperature of the absorbing halo is between 1 million and 2.5 million kelvins, or a few hundred times hotter than the surface of the sun, which gives weight to previous studies which had galaxies covered in warm gas with temperatures between 100,000 and 1 million kelvins.

“We know the gas is around the galaxy, and we know how hot it is,” said Anjali Gupta, lead author of The Astrophysical Journal paper describing the research. “The big question is, how large is the halo, and how massive is it?”

Our galaxy is surrounded in thin cloud of gas stretching across hundreds of thousands of years

They concluded that the mass of the gas is equivalent to the mass in more than 10 billion suns, perhaps as large as 60 billion suns, an estimation that primarily factored in the  amount of oxygen relative to hydrogen, which is the dominant element in the gas. Still, considering the gas halo is extremely vast, this makes it very low density, making observations of similar gas halos embedding other galaxies almost impossible using today’s instruments. Yet, if confirmed, scientists might assert that this halo is present around many, if not most galaxies in the Universe.

“Our work shows that, for reasonable values of parameters and with reasonable assumptions, the Chandra observations imply a huge reservoir of hot gas around the Milky Way,” said co-author Smita Mathur of Ohio State University in Columbus. “It may extend for a few hundred thousand light-years around the Milky Way or it may extend farther into the surrounding local group of galaxies. Either way, its mass appears to be very large.”

It also might untangle a riddle which has been pestering scientists for decades, namely the missing baryon problem. Baryons are particles, such as protons and neutrons, that make up more than 99.9 percent of the mass of atoms found in the cosmos. A while ago, scientists tried estimated the number of atoms and ions that would have been present in the Universe 10 billion years ago. Measurements however showed that only half of the estimated baryons were located.  Other studies suggests hints that the missing baryons are stranded in a sort of cosmic web, consisting of a vast gas cloud formations connecting galaxies between each other.

Chandra’s latest findings seems to add substance to this particular theory. These were reported in Sept. 1 issue of The Astrophysical Journal.

source: NASA

share Share

Three Secret Russian Satellites Moved Strangely in Orbit and Then Dropped an Unidentified Object

We may be witnessing a glimpse into space warfare.

This strange rock on Mars is forcing us to rethink the Red Planet’s history

A strange rock covered in tiny spheres may hold secrets to Mars’ watery — or fiery — past.

Scientists Found a 380-Million-Year-Old Trick in Velvet Worm Slime That Could Lead To Recyclable Bioplastic

Velvet worm slime could offer a solution to our plastic waste problem.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.

The most successful space telescope you never heard of just shut down

An astronomer says goodbye to Gaia, the satellite that mapped the galaxy.

Astronauts are about to grow mushrooms in space for the first time. It could help us live on Mars

Mushrooms could become the ultimate food for living in colonies on the moon and Mars.

Dark Energy Might Be Fading and That Could Flip the Universe’s Fate

Astronomers discover hints that the force driving cosmic expansion could be fading

Curiosity Just Found Mars' Biggest Organic Molecules Yet. It Could Be A Sign of Life

The discovery of long-chain organic compounds in a 3.7-billion-year-old rock raises new questions about the Red Planet’s past habitability.

Astronomers Just Found Oxygen in a Galaxy Born Only 300 Million Years After the Big Bang

The JWST once again proves it might have been worth the money.

New NASA satellite mapped the oceans like never before

We know more about our Moon and Mars than the bottom of our oceans.