homehome Home chatchat Notifications


Innovative method improves tsunami warning systems

In case you don’t know, a tsunami is a series of waves created when a body of water, such as an ocean, is rapidly displaced. Earthquakes, mass movements above or below water, volcanic eruptions and other underwater explosions, landslides, underwater earthquakes, large meteoroid or asteroid impacts and testing with nuclear weapons at sea all have […]

Mihai Andrei
January 24, 2008 @ 10:20 am

share Share

tsunami
In case you don’t know, a tsunami is a series of waves created when a body of water, such as an ocean, is rapidly displaced. Earthquakes, mass movements above or below water, volcanic eruptions and other underwater explosions, landslides, underwater earthquakes, large meteoroid or asteroid impacts and testing with nuclear weapons at sea all have the potential to generate a tsunami. A tsunami can be unobservable, but it can just as well be devastating. Recent disasters showed how unprepared we were for them, so scientists have been trying to do something to improve the warning systems.

Studies conducted by NASA on tsunamis revealed an innovative method which could achieve that goal, and a potentially groundbreaking theory on the source of the 2004 tsunami in the Indian Ocean. In one study, published last fall in Geophysical Research Letters, researcher Y. Tony Song of NASA’s Jet Propulsion Laboratory, Pasadena, Calif., demonstrated that real-time data from NASA’s network of global positioning system (GPS) stations can detect ground motions preceding tsunamis and reliably estimate a tsunami’s destructive potential within minutes, well before it reaches coastal areas. Conventional methods rely on estimates of an earthquake’s magnitude to determine whether a large tsunami will be generated but earthquake magnitude is not always a good thing to rely on.

This method estimates the energy that an undersea earthquake transfers to the ocean and generates data from coastal GPS stations near the epicenter. With the data, ocean floor displacements caused by the earthquake can be inferred.

“Tsunamis can travel as fast as jet planes, so rapid assessment following quakes is vital to mitigate their hazard,” said Ichiro Fukumori, a JPL oceanographer not involved in the study. “Song and his colleagues have demonstrated that GPS technology can help improve both the speed and accuracy of such analyses.”

To test his method, Song examined three historical tsunamis using well documented data: Alaska in 1964; the Indian Ocean in 2004; and Nias Island, Indonesia in 2005. He was able to replicate all three. Co-author C.K. Shum of Ohio State University said the study suggests horizontal faulting motions play a much more important role in tsunami generation than previously believed.

“If this is found to be true for other tsunamis, we may have to revise some early views on how tsunamis are formed and where mega tsunamis are likely to happen in the future,” he said.

Hopefully this method is going to do better and disasters like the one in 2004 will be avoided [edit: it didn’t work out so fine, in 2012, a massive earthquake hit Japan, generating a massive tsunami that caused significant damage].

share Share

GeoPicture of the week: Biggest crystals in the world

Known as Cueva de los Cristales (Cave of Crystals), this hidden chamber in Mexico holds some of the largest natural crystals ever discovered. The translucent pillars, some as long as telephone poles and as wide as tree trunks, make for an eerie underground landscape, seemingly crafted by giants. But there’s no magic involved, just some […]

9,000-year-old non-stick trays was used to make Neolithic focaccia

Husking trays not only baked bread but also fostered human connection across an area spanning 2,000 km (~1,243 miles)

This rare mineral is older than the Earth

Krotite is a cosmic relic, one of the oldest minerals in the Solar System, formed under fiery conditions in the early protoplanetary disk.

Researchers find evidence of hot water on Mars -- in a rock on Earth

A zircon crystal from a Martian meteorite unlocks secrets of a water-rich, dynamic Mars 4.45 billion years ago.

Meet the world's rarest mineral. It was found only once

A single gemstone from Myanmar holds the title of Earth's rarest mineral, kyawthuite.

Massive exploding methane craters are tearing Siberia apart and scientists finally know why

Scientists uncover the mechanics behind Siberia's explosive craters as warming drives methane release.

Scientists bioengineer mussel-inspired bacteria that sticks to and break down plastic waste

The modified bacteria clings 400 times better to plastic than normal bacteria.

Giant 160-million-year-old tadpole sheds new light on frog evolution

Amphibian fossils, particularly those capturing larval stages, are exceptionally rare due to tadpoles’ soft, delicate bodies, which are highly prone to decay.

Why does nature keep making perfect cubical pyrite crystals?

There's a lof of chemistry wisdom in this "fool's gold."

Clinoptilolite: the unusual mineral used as protection after Chornobyl

This tongue-twister of a mineral has extraordinary uses, including nuclear disaster cleanups.