homehome Home chatchat Notifications


Ant groups alternate between movement types to avoid obstacles

Birds, err, ants of a fellow flock together.

Elena Motivans
May 10, 2018 @ 9:01 pm

share Share

As anyone who has ever worked in a group can attest, it is hard for everyone work together to reach a common goal and conquer obstacles. Large groups of ants often also face obstacles as they carry large pieces of food back to their nest. They need to be able to coordinate the whole group to successfully bring back the tasty morsel, without the luxury of language. Research published in PLOS Computational Biology has unveiled the strategy that the ants use to coordinate their groups.

Ants often find large nuggets of food, like a worm or maggot, that would feed their colony but also requires joint carrying by dozens or hundreds of ants. The ants need to be able to work around obstacles as a large group. According to senior author Prof. Gov, ants carrying the object are “programmed” to cooperate and they tend to help the group to carry the object in the already chosen direction of motion. They are just followers and even a random disturbance will get them going in a random direction. It’s up to the “informed” ants to lead the group to the nest following a scent trail. To figure out how ants coordinate their movement, researchers first built a mathematical model and then tested it out with real ants.

The researchers built a simulation in which ants carrying a load encounter a barrier with a narrow hole. The results showed that ants avoid obstacles by alternating between two types of motion: dwelling near the hole to pass the food through the hole or moving sideways to seek a route around the barrier.

Ants carrying the object in the controlled laboratory setting. Image credits: Jonathan Ron, Ehud Fonio.

The method used depends on the size of the ant group. When the group is smaller, it is likely carrying a smaller piece of food and will spend more time near the hole. Larger groups with larger food items have less of a chance to push their food through the hole and therefore perform more sideways motions to find a route around the barrier. The combination of the two motion types allows the ant group to find a solution that works.

The researchers then tested their predictions on actual ants, using objects ranging from 1 cm to 4 cm in diameter. The ants confirmed the hypothesis by switching between both movement types. Smaller groups spend more time near the hole instead of finding a way around the obstacle.

“This study shows that an animal group, when confronted by some external challenge or problem it needs to solve, may indeed solve it without any single individual in the group actually realizing what is the problem, and how to solve it.

The group behavior may in fact be rich enough to offer appropriate solutions. Here the group behavior is found to allow two possibilities, either being “stuck” near the opening or performing larger sideways excursions along the barrier. Small objects that could possible be squeezed through the opening indeed tend to spend more time there, while larger objects spend more time going sideways, as if the ants know that for such large items they need to find a detour,” said senior author Prof. Nir Gov from the Department of Chemical Physics at the Weizmann Institute of Science to ZME Science.

The ants are then able to choose the best strategy for their obstacle and coordinate their whole group in the same direction—an inspiration for us all.

Journal reference: Ron JE, Pinkoviezky I, Fonio E, Feinerman O, Gov NS (2018) Bi-stability in cooperative transport by ants in the presence of obstacles. PLoS Comput Biol 14(5): e1006068. https://doi.org/10.1371/journal.pcbi.1006068

 

share Share

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.

How a 1932 Movie Lawsuit Changed Hollywood Forever and Made Disclaimers a Thing

MGM Studios will remember Rasputin forever. After all, he caused them to lose a legal battle that changed the film industry forever.

These "Ants" Use Ultrablack to Warn Predators — and Stay Cool

Velvet ants, actually flightless wasps, boast an ultrablack exoskeleton thanks to dense nanostructures.

These Squirrels Are Hunting and Eating Meat. Scientists Are Stunned — And They Have Video Proof

California ground squirrels surprise scientists with their newly discovered taste for mammalian flesh.

Scientists Call for a Global Pause on Creating “Mirror Life” Before It’s Too Late: “The threat we’re talking about is unprecedented”

Creating synthetic lifeforms is almost here, and the consequences could be devastating.

This Hornet Can Drink 80% Alcohol Without Ever Getting Drunk and Scientists Finally Know Why

Oriental hornets never get intoxicated with alcohol no matter how strong the alcohol or how long they drink.

This Tiny Microbe Can Withstand Extreme Radiation That Would Obliterate Humans. Here's How It Might Protect Astronauts on a Trip to Mars

Could a humble bacterium hold the key to surviving cosmic radiation?

The heart may have its own "mini-brain": a nervous system that controls heartbeat

Somewhere within the heart, there may be a "little brain".