homehome Home chatchat Notifications


Spider silk could lead to a new generation of microphones and hearing aids

Spider silk in your ear? For once, that sounds like a good idea.

Mihai Andrei
November 1, 2017 @ 3:23 pm

share Share

Spider silk continues to impress with its unique properties. It’s not just about its strength and toughness — spider silk might soon be used to improve acoustic properties as well.

Binghamton University professor Ron Miles and graduate student Jian Zhou examined what we can learn from insects when it comes to hearing. Most insects have a completely different hearing system than our own. While we use our eardrums to detect the pressure from sound waves, insects typically use hairs on their body to detect the speed of the waves — in other words, they hear through hairs on their bodies.

As it turns out, spider silk is also thin enough to be moved by sound waves, even at very low frequencies. Researchers liken it to tectonic plates moving as a result of an earthquake.

“This can even happen with infrasound at frequencies as low as three hertz,” Miles said of the movement of spider silk.

Miles (pictured here) says this is a fairly simple way to make an extremely effective microphone. Image credits: Binghamton University.

Technically, any fiber thin enough could be used to detect sound, but its other properties make spider silk much more desirable. While the fiber senses the direction of incoming sound with great accuracy, it first needs to be translated into an electric signal to be of any use, so Miles and Zhou coated spider silk in gold and placed it inside a magnetic field to generate a very simple microphone.

“The microphone consists of super-thin fibers that move with the air in a sound field,” said Miles, a mechanical engineer at Binghamton University. “The fibers are driven by viscous forces in air, like those that cause tiny dust particles to float around in a slight breeze.”

However, this simple microphone proved to be much more effective than many existing commercial options, able to pick up sounds that are too quiet for regular microphones — with great precision.

“By modifying a spider silk to be conductive and transducing its motion using electromagnetic induction, we demonstrate a miniature, directional, broadband, passive, low-cost approach to detect airflow with full fidelity over a frequency bandwidth that easily spans the full range of human hearing, as well as that of many other mammals,” researchers write in the study.

With further sophistication (such as filtering out background noise and improving signal quality), the technology can improve even further. This could be a game changer not only for microphones and hearing aids but also for mobile phones, as well as any industry that requires picking up sounds better and with higher fidelity.

You can see a video comparing the waveform of the silk (the way it moves as a result of sound waves) to its spectrogram here.

Journal Reference: Jian Zhou and Ronald N. Miles. Sensing fluctuating airflow with spider silk. doi: 10.1073/pnas.1710559114

share Share

Your gut has a secret weapon against 'forever chemicals': microbes

Our bodies have some surprising allies sometimes.

High IQ People Are Strikingly Better at Forecasting the Future

New study shows intelligence shapes our ability to forecast life events accurately.

Newborns Feel Pain Long Before They Can Understand It

Tiny brains register pain early, but lack the networks to interpret or respond to it

Cheese Before Bed Might Actually Be Giving You Nightmares

Eating dairy or sweets late at night may fuel disturbing dreams, new study finds.

Scientists Ranked the Most Hydrating Drinks and Water Didn't Win

Milk is more hydrating than water. Here's why.

Methane Leaks from Fossil Fuels Hit Record Highs. And We're Still Looking the Other Way

Powerful leaks, patchy action, and untapped fixes keep methane near record highs in 2024.

Astronomers Found a Star That Exploded Twice Before Dying

A rare double explosion in space may rewrite supernova science.

This Enzyme-Infused Concrete Could Turn Buildings into CO2 Sponges

A new study offers a greener path for concrete, the world’s dirtiest building material.

AI Helped Decode a 3,000-Year-Old Babylonian Hymn That Describes a City More Welcoming Than You’d Expect

Rediscovered text reveals daily life and ideals of ancient Babylon.

Peeling Tape Creates Microlightning Strong Enough To Power Chemistry

Microlightning from everyday tape may unlock cleaner ways to drive chemical reactions.