homehome Home chatchat Notifications


Scientists develop single-atom transistor with 'perfect' precision

Australian scientists at University of New South Wales have successfully managed to build the first single-atom transistor, using a scalable, repeatable technique. The scientific community all over the world have already hailed this achievement as a highly important milestone, as single-atom transistors are considered as a critical building block for the eventual development of quantum computers. […]

Tibi Puiu
February 20, 2012 @ 12:04 pm

share Share

3D perspective of a single-atom transistor. (C) RC Centre for Quantum Computation and Communication, at UNSW.

3D perspective of a single-atom transistor. (C) RC Centre for Quantum Computation and Communication, at UNSW.

Australian scientists at University of New South Wales have successfully managed to build the first single-atom transistor, using a scalable, repeatable technique. The scientific community all over the world have already hailed this achievement as a highly important milestone, as single-atom transistors are considered as a critical building block for the eventual development of quantum computers.

The tiny device was created using a scanning-tunneling microscope (STM), which allowed the team of researchers, who have been working on this project for ten years, to manipulate hydrogen atoms around a phosphorus atom with extreme precision onto a silicon wafer – all in ultra-high vacuum conditions. The microscopic device was even fitted with tiny visible markers etched onto its surface so researchers can connect metal contacts and apply a voltage. The end result is a single-atom transistor, which puts quantum computing systems a step closer to becoming reality.

“Our group has proved that it is really possible to position one phosphorus atom in a silicon environment – exactly as we need it – with near-atomic precision, and at the same time register gates,”  Dr Martin Fuechsle from UNSW says.

Single-atom transistors have been created before, the first demonstration dating from as early as 2002, however the development method could have only been described as hit or miss – resulting devices were made only by chance. This latest technique developed by the UNSW scientists can produce single-atom transistors with very high precision and reliability. Also, their technique respects the current industry-standard for building circuitry.

“But this device is perfect”, says Professor Michelle Simmons, group leader and director of the ARC Centre for Quantum Computation and Communication at UNSW. “This is the first time anyone has shown control of a single atom in a substrate with this level of precise accuracy.”

Considering Moore’s Law, which states that the number of transistors inside a circuit should double every 18 months, it is predicted that transistors will reach the single-atom level (the ultimate limit) by 2020.  Currently, the smallest dimension in state-of-the-art computers made by Intel is 22 nanometers — less than 100 atoms in diameter.

Using a similar technique, Intel engineers recently managed to create a magnetic storage device using an array composed of a mere 12 atoms.

share Share

If you use ChatGPT a lot, this study has some concerning findings for you

So, umm, AI is not your friend — literally.

Miyazaki Hates Your Ghibli-fied Photos and They're Probably a Copyright Breach Too

“I strongly feel that this is an insult to life itself,” he said.

Bad microphone? The people on your call probably think less of you

As it turns out, a bad microphone may be standing between you and your next job.

Earth’s Longest Volcanic Ridge May Be an Underwater Moving Hotspot

Scientists uncover surprising evidence that the Kerguelen hotspot, responsible for the 5,000-kilometer-long Ninetyeast Ridge, exhibited significant motion.

New NASA satellite mapped the oceans like never before

We know more about our Moon and Mars than the bottom of our oceans.

This AI Tool Can Scan Your Food and Tell You Exactly How Many Calories and Other Nutrients It Has

Knowing what's inside your food has never been so easy.

Cats Actually Have Hundreds of Facial Expressions and They Mirror Each Other to Form an Emotional Bond

Want to befriend a cat? Don't forget to blink or squint back if a cat does the same at you.

Astronauts Can Now Print Metal in Space and It’s a Game Changer for Future Missions

ESA’s metal 3D printer aboard the ISS could revolutionize space exploration by enabling self-sufficient missions.

This Tiny Robot Swims Like a Worm — and Could Explore Alien Oceans

Marine flatworms have perfected smooth, undulating motion over millions of years of evolution. Now, scientists have taken inspiration to create a highly agile robot.

From the vault: Why bats don't fly in the rain

Ever wondered why you never see bats flying in the rain?