homehome Home chatchat Notifications


Quantum satellite investigates the gap between Quantum Mechanics and General Relativity

An international team of scientists has attempted to test the effects of gravity on quantum entanglement using the Micius Quantum Satellite - a first for testing quantum physics in space.

Rob Lea
September 22, 2019 @ 1:01 pm

share Share

Experimental diagram of testing gravity-induced decoherence of entanglement (provided by University of Science and Technology of China)

Quantum mechanics and general relativity represent the two most successful theories in 20th-century physics. But despite almost 100 years of continued experimental verification and practical application, researchers remain unable to unite the disciplines. 

As general relativity describes the effects of gravity on Einstein’s four-dimensional spacetime — three dimensions of space and time — this means that a quantum theory of gravity continues to evade detection. 

As the problem of unification remains unsolved, physicists put forward various models that require experimental verification. 

A team of international researchers has developed a framework to test a model which may account for the breakdown of general relativity’s rules on the quantum scale. They tested this framework using the quantum satellite — Micius — a Chinese project which tests quantum phenomena in space. 

The research — documented in a paper published in the journal Science — represents the first meaningful quantum optical experiment testing fundamental physics between quantum theory an gravity, says Jian-Wei Pan, director of the CAS centre for Excellence in Quantum Information and Quantum Physics at the University of Science and Technology of China.

Pan and his team wanted to test the event formalism model of quantum fields model — a theory that suggests that the correlation between entangled particles would collapse — a phenomenon known as decoherence — as they pass through the gravitational well of Earth. The idea is that the differences in the gravitational force would force decoherence as the particle experiencing less gravity would be able to travel with less constraint than its counterpart in an area of stronger gravity.

Pan suggests that event formalism presents a description of quantum fields existing in spacetime as described by general relativity — consisting of curvature caused by the presence of mass. Thus if the team can observe this model’s effects, they can imply the presence of quantum phenomena on a larger scale as described by general relativity.

Pan says: “If we did observe the deviation, it would mean that event formalism is correct, and we must substantially revise our understanding of the interplay between quantum theory and gravity theory.”

In their test, the team used pairs of particles described as ‘time-energy entangled’ — a recently discovered type of entanglement which photons are entangled in terms of their energies and the times they are detected. 

The team was unable to detect the particles deviating from standard behaviour expected in quantum mechanics, but they plan to retest a version of their theory that is more flexible. 

“We ruled out the strong version of event formalism, but there are other versions to test,” Pan says. “A modified model remains an open question.”

To put this revised version to the test a new satellite will be launched that will orbit up to sixty-times higher than Micius — enabling it to test a wider variation in gravitational field strength. 


Original research: https://science.sciencemag.org/content/early/2019/09/18/science.aay5820

share Share

A Simple Heat Hack Could Revolutionize How We Produce Yogurt

In principle, the method could be deployed tomorrow, researchers say.

Scientists Create a ‘Smart Sponge’ That Knows When to Heal and When to Fight Inflammation

This hydrogel could help millions of people lead a better life.

The Race to the Bottom: Japan Is Set to Start Testing Deep-Sea Mining

There's a big hidden cost to this practice.

Japan Just Smashed the Internet Speed World Record and It's Much Faster Than You Think

Researchers transmitted 127,500 GB every second — over the distance from Chicago to Dallas.

Can You Tell Which Knot Is Strongest? Most People Fail This Surprisingly Tough Challenge

Knots are a test of physical intuition and most of us are failing hard.

Scientists Call for a Global Pause on Creating “Mirror Life” Before It’s Too Late: “The threat we’re talking about is unprecedented”

Creating synthetic lifeforms is almost here, and the consequences could be devastating.

For the First Time Ever We Can See Planets Starting to Form Around a Star

JWST and ALMA peered through a natural opening in the star’s surrounding cloud to catch the action up close.

Low testosterone isn't killing your libido. Sugar is

Small increases in blood sugar can affect sperm and sex, even without diabetes

There might be an anti-aging secret hiding in magic mushrooms

Psilocybin extends cell life, and preserves aging DNA structures.

Not Just Hunters: Wooden Tools Unearth the Sophisticated, Plant-Eating World of Early Humans

What if the Stone Age wasn't really about stone?