homehome Home chatchat Notifications


Quantum time-space asymmetry explains the origins of dynamics

Griffith University Associate Professor Joan Vaccaro believes she may have uncovered how our reality differentiates the future from the past. Her paper could topple our understanding of time flow (ironically) forever.

Alexandru Micu
January 29, 2016 @ 6:36 pm

share Share

Griffith University Associate Professor Joan Vaccaro believes she may have uncovered how our reality differentiates the future from the past. Her research paper, published in the journal Proceedings of the Royal Society A, could topple our understanding of time flow (ironically) forever.

Associate Professor Joan Vaccaro, of Griffith University’s Centre for Quantum Dynamics Credit: Griffith University.
Image via phys

A paper titled “Quantum asymmetry between time and space,” published by Associate Professor Joan Vaccaro of Griffith University’s Centre for Quantum Dynamics challenges our almost instinctual presumption that the flow of time is a fundamental part of nature. She suggests there may be a deeper origin to the incessant unfolding of the Universe around us over time due to a difference between the two directions of time: to the future and to the past.

“If you want to know where the universe came from and where it’s going, you need to know about time,” Vaccaro says.

“Experiments on subatomic particles over the past 50 years ago show that Nature doesn’t treat both directions of time equally. In particular, subatomic particles called K and B mesons behave slightly differently depending on the direction of time.”

Matter is thought of as restricted in space but not over time. In other words, matter simply exists at one point in space and not another. But if matter is restricted over time, it would mean that it pops in and out of existence, directly violating the law of mass conservation.

Traditionally, quantum mechanics overcomes this problem by assigning a fixed-over-time quantum state vector to matter. There is, however, no corresponding restriction of the state vector over space. This is done because matter is expected to evolve over time but with no corresponding presumption about its movement in space.

These axiomatically imposed restrictions create an asymmetry between time and space where systems are “forced” to evolve over time but not through space. This translates to equations of motion and conservation laws that operate differently over time and space.

However, Associate Professor Vaccaro used a “sum-over-paths formalism” to demonstrate the possibility of a time and space symmetry, meaning the conventional view of time evolution would need to be revisited.

“In the connection between time and space, space is easier to understand because it’s simply there. But time is forever forcing us towards the future,” says Associate Professor Vaccaro.

“Yet while we are indeed moving forward in time, there is also always some movement backwards, a kind of jiggling effect, and it is this movement I want to measure using these K and B mesons.”

The mathematics behind their concept is just…Mind breaking. But, the authors conclude that in their system a T (standing for time-reversal) violation is seen as being responsible for the fundamental differences between space and time in conventional quantum mechanics. Professor Vaccaro says the research provides a solution to the origin of dynamics, an issue that has long perplexed science.

The full paper can be found online here.

share Share

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.

How Much Does a Single Cell Weigh? The Brilliant Physics Trick of Weighing Something Less Than a Trillionth of a Gram

Scientists have found ingenious ways to weigh the tiniest building blocks of life

The Moon Used to Be Much Closer to Earth. It's Drifting 1.5 Inches Farther From Earth Every Year and It's Slowly Making Our Days Longer

The Moon influences ocean tides – and ocean tides, in some ways, influence the Moon back.

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

Ice isn't as passive as it looks.

The Crystal Behind Next Gen Solar Panels May Transform Cancer and Heart Disease Scans

Tiny pixels can save millions of lives and make nuclear medicine scans affordable for both hospitals and patients.

Satellite data shows New York City is still sinking -- and so are many big US cities

No, it’s not because of the recent flooding.

How Bees Use the Sun for Navigation Even on Cloudy Days

Bees see differently than humans, for them the sky is more than just blue.

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

A single photonic chip for all future wireless communication.