homehome Home chatchat Notifications


Accidental exposure of crystal to light increases electrical conductivity 400 fold

A team of researchers at Washington State University achieved a dramatic 400 fold increase in electrical conductivity for a crystal after it was accidentally left exposed to light one day. This readings are attributed to photoconductivity, a phenomenon which causes a material to become more electrically conductive due to the absorption of electromagnetic radiation such as […]

Tibi Puiu
November 14, 2013 @ 5:44 am

share Share

Structure of SrTiO3. The red spheres are oxygens, blue are Ti4+ cations, and the green ones are Sr2+. Credit: Wikipedia

Structure of SrTiO3. The red spheres are oxygens, blue are Ti4+ cations, and the green ones are Sr2+. Credit: Wikipedia

A team of researchers at Washington State University achieved a dramatic 400 fold increase in electrical conductivity for a crystal after it was accidentally left exposed to light one day. This readings are attributed to photoconductivity, a phenomenon which causes a material to become more electrically conductive due to the absorption of electromagnetic radiation such as visible light, ultraviolet light, infrared light, or gamma radiation.

WSU doctoral student Marianne Tarun at first thought that the strontium titanate crystal (SrTiO3) they were studying had become contaminated, but it soon became clear that its conductivity skyrocket because of exposure to light.

“It came by accident,” said Tarun. “It’s not something we expected. That makes it very exciting to share.”

The two orders of magnitude achieved simply through exposure to light is impressive and not without practical applications. Superconductivity represents the complete lack of electrical resistance of a material. Therefore, no heat is generated when the current moves through the conductor and in consequence no energy is lost. Typically that’s not that much of a problem, but what if you have a gigawatt solar thermal facility in California and you want to move that energy to Texas or Seattle or New York? The losses are tremendous. Superconductivity would be a solution, however most superconductive materials exhibit this characteristic close to absolute zero temperature (0 Kelvin), which requires poring energy to cool the material. Here’s a demo of what superconductivity means.

Achieving superconductivity at room temperature would be a dream come true for most scientists, and would mark a turning point in the industry. While not superconductive, the Washington State strontium titanate crystal isn’t that far off. After a  sample of strontium titanate was exposed to light for 10 minutes, its improved conductivity lasted for days. They theorize that the light frees electrons in the material, letting it carry more current.

“The discovery of this effect at room temperature opens up new possibilities for practical devices,” said Matthew McCluskey, co-author of the paper and chair of WSU’s physics department. “In standard computer memory, information is stored on the surface of a computer chip or hard drive. A device using persistent photoconductivity, however, could store information throughout the entire volume of a crystal.”

What McCluskey is referring to is often called “holographic memory” – storing information throughout the volume of the medium while at the same time being capable of recording multiple images in the same area utilizing light at different angles. Whereas magnetic and optical data storage records information a bit at a time in a linear fashion, holographic storage is capable of recording and reading millions of bits in parallel, enabling data transfer rates greater than those attained by traditional optical storage.

Findings appeared in the journal Physical Review Letters.

share Share

AI-designed autonomous underwater glider looks like a paper airplane and swims like a seal

An MIT-designed system lets AI evolve new shapes for ocean-exploring robots.

Bees are facing a massive survival challenge. Could AI help them?

Our tiny friends are in trouble and it's because of us.

NASA finally figures out what's up with those "Mars spiders"

They're not actual spiders, of course, but rather strange geological features.

Cycling Is Four Times More Efficient Than Walking. A Biomechanics Expert Explains Why

The answer lies in the elegant biomechanics of how our bodies interact with this wonderfully simple machine.

We’re Starting to Sound Like ChatGPT — And We Don’t Even Realize It

Are chatbots changing our vocabulary? There's increasing evidence this is the case.

Scientists Just Showed How Alien Life Could Emerge in Titan's Methane Lakes

What if the ingredients of life could assemble on a methane world?

Can Dogs Really Smell Parkinson’s? These Two Good Boys Say Yes

Our best friend is even more awesome than we thought.

Scientists 3D Printed Microscopic Elephants and Barcodes Inside Cells for the First Time

What happens when you 3D-print an elephant and a microlaser inside a living cell?

AI-Powered Surgical Robot Performed a Full Operation With Zero Help From Humans

An AI robot performed gallbladder surgery without human help, and it worked every time.

These 18 Million-Year-Old Teeth Contain the Oldest Proteins Ever and They Came From Giant Prehistoric Beasts

The oldest protein fragments ever recovered challenge what we thought we knew about fossil decay.