homehome Home chatchat Notifications


A phone charger that's powered by urine

Engineers at Bristol University have developed a microbial fuel cell (MFC) that turns organic matter, in our case urine, into electricity. The fuel cell is equipped on a mobile charger, and its creators envision the device being implemented in various other applications that can recycle urine. Restaurants, bars and various other buildings that employ public toilets might […]

Tibi Puiu
July 17, 2013 @ 9:40 am

share Share

Dr Ioannis Ieropoulos inside the Bioenergy laboratory at the BRL, holding a phone powered by a microbial fuel cell stack. (c) Bristol University

Dr Ioannis Ieropoulos inside the Bioenergy laboratory at the BRL, holding a phone powered by a microbial fuel cell stack. (c) Bristol University

Engineers at Bristol University have developed a microbial fuel cell (MFC) that turns organic matter, in our case urine, into electricity. The fuel cell is equipped on a mobile charger, and its creators envision the device being implemented in various other applications that can recycle urine. Restaurants, bars and various other buildings that employ public toilets might collect the urine in special containers which could then be converted into useful energy.

The MFCs work by breaking down the urine through the specially-grown bacteria’s metabolic process. The bacteria produce electrons as they consume the matter and it this natural process that creates a small electrical charge to be stored in the MFC.

“No one has harnessed power from urine to do this so it’s an exciting discovery,” said Dr Ioannis Ieropoulos, an engineer at the Bristol Robotics Laboratory where the fuel cells were developed.

“The beauty of this fuel source is that we are not relying on the erratic nature of the wind or the sun; we are actually reusing waste to create energy. One product that we can be sure of an unending supply is our own urine.”

Now, I don’t mean to discredit Dr. Ieropoulos, however a few years ago I’ve written about a similar full cell that converts the chemical energy in urea (found in urine) into electricity through an electrochemical process that does not require combustion, with heat as the by-product. True however, that particular system was not based on bacteria.

The electrons are then stored into a capacitor, whose electrical charge can be released to power a device. In this case, the Bristol researchers simply plugged in a commercial Samsung phone charger and were able to charge up the handset. Don’t get too excited yet, though. Their set-up is still an experimental prototype and so far the hurdles far outweigh the benefits. For one, its the size of a car battery and the handheld they charged only lasted for roughly the time it took to make a call.

Even so, the researchers are confident they can miniaturize their MFCs, and considering each fuel cell only costs around £1 to produce such devices could provide a new, cheaper way of generating power.

“One [use] would be to put these into domestic situations or it could be used in remote regions of the developing world,” said Dr Ieropoulos.

“The fuel cells we have used to charge a mobile phone with hold around 50ml of urine but the smallest we have had working in the laboratory hold 1ml, so we can make them a lot smaller. Our aim is to have something that can be carried around easily.”

“The concept has been tested and it works – it’s now for us to develop and refine the process so that we can develop MFCs to fully charge a battery.”

share Share

Superhot Rock Energy Could Provide Enough Power to Fuel the U.S. Thousands of Times Over

Could next-generation geothermal energy finally fulfill its promise of ridding us of fossil fuels for good?

The explosive secret behind the squirting cucumber is finally out

Scientists finally decode the secret mechanism that has been driving the peculiar seed dispersion action of squirting cucumber.

Researchers present the first fully AI-designed wind turbine — it's 7x more efficient in cities

AI is transforming urban wind energy. Researchers in Birmingham, UK, have developed a revolutionary turbine optimized for low wind speeds and urban turbulence.

Cars Are Unwittingly Killing Millions of Bees Every Day, Scientists Reveal

Apart from pollution, pesticides, and deforestation, cars are also now found to be killing bees in large numbers.

Could CAR-T Therapy Be the End of Lifelong Lupus Medication? Early Results Say 'Yes'

T-cells are real life saviors. If modified properly, they can save lupus patients from the trouble of taking medicines regularly.

Could Spraying Diamonds into the Sky Be the Key to Cooling the Planet?

Nothing is more precious than our planet, and we must cool it fast. Scientists say this can be done by decorating the sky with diamonds.

Scientists bioengineer mussel-inspired bacteria that sticks to and break down plastic waste

The modified bacteria clings 400 times better to plastic than normal bacteria.

Nearly all fish in the US are still contaminated by mercury. Here's what you need to know

Researchers have been sounding the alarm for years, but the US still has a big mercury pollution problem.

AI's thirst for energy is reopening an infamous nuclear plant in the US

We all know AI is using up a lot of power. But we didn't have "reopening nuclear plants" on our bingo card.

New "tractor beam on a chip" can manipulate cells using beams of light

Researchers develop integrated optical phased array tweezers with the potential to revolutionize biological research.