homehome Home chatchat Notifications


Particle accelerator on a chip demonstrated

A team of brilliant researchers at  the U.S. Department of Energy’s (DOE) SLAC National Accelerator Laboratory and Stanford University have demonstrated a working particle accelerator, used to accelerate particles like electrons or protons to extremely high energies and probe the Universe’s secrets, which is the size of a typical silicon chip. Typically, particle accelerators range from a […]

Tibi Puiu
October 1, 2013 @ 7:10 am

share Share

Nanofabricated chips of fused silica just 3 millimeters long were used to accelerate electrons at a rate 10 times higher than conventional particle accelerator technology. (Brad Plummer/SLAC)

Nanofabricated chips of fused silica just 3 millimeters long were used to accelerate electrons at a rate 10 times higher than conventional particle accelerator technology. (Brad Plummer/SLAC)

A team of brilliant researchers at  the U.S. Department of Energy’s (DOE) SLAC National Accelerator Laboratory and Stanford University have demonstrated a working particle accelerator, used to accelerate particles like electrons or protons to extremely high energies and probe the Universe’s secrets, which is the size of a typical silicon chip. Typically, particle accelerators range from a few kilometers in length to 27 kilometers – the length of the Large Hadron Collider at CERN, the largest particle accelerator in the world.

The researchers liken their work to the pioneering research in electronics from the early ’50s when the transistor replaced huge vacuum tubes and scaled down computers from room-size to tabletop-size. Bring the particle accelerator to the researchers, instead of the researchers having to come to the particle accelerator. As fascinating and useful the idea is, so were the challenges the SLAC team had to overcome.

A tiny particle accelerator

Accelerators today work by using microwaves to boost the energy of electrons, in a two-phase process. In the first part, particles are accelerated near the speed of light. In the second phase, the particles stop gaining velocity, instead the acceleration increases their energy, not the speed – a highly tricky process.

The key to the accelerator chips is tiny, precisely spaced ridges, which cause the iridescence seen in this close-up photo. (Brad Plummer/SLAC)

The key to the accelerator chips is tiny, precisely spaced ridges, which cause the iridescence seen in this close-up photo. (Brad Plummer/SLAC)

The SLAC and Stanford team went on an alternate route and used high-precision lasers instead of microwaves, which allowed them to scale down their accelerators to the size of a typical chip. In the accelerator-on-a-chip experiment, electrons are accelerated near the speed of light just like in a conventional accelerator. Then comes the novel part: the near light-speed electrons are then focused through a tiny, half-micron channel (millionth of a meter) within a fused silica glass chip just half a millimeter long. The channel is patterned with precisely spaced nanoscale ridges, which when hit by infrared laser light  generates electrical fields that interact with the electrons in the channel to boost their energy.

This initial demonstration achieved an acceleration gradient, or amount of energy gained per length, of 300 million electronvolts per meter. That’s roughly 10 times the acceleration provided by the current SLAC linear accelerator. Using such a system, theoretically, you could match the accelerating power of the 2 mile-long SLAC accelerator with just 100 feet, and deliver a million more electron pulses per second. The researchers say the could scale it down even further.

“Our ultimate goal for this structure is 1 billion electronvolts per meter, and we’re already one-third of the way in our first experiment,” said Stanford Professor Robert Byer, the principal investigator for this research.

The nanoscale patterns of SLAC and Stanford's accelerator on a chip gleam in rainbow colors prior to being assembled and cut into their final forms. (Matt Beardsley/SLAC)

The nanoscale patterns of SLAC and Stanford’s accelerator on a chip gleam in rainbow colors prior to being assembled and cut into their final forms. (Matt Beardsley/SLAC)

New generations of smaller, less expensive devices for science, medicine

The demonstration proves that the system may be employed into powerful, yet compact particle accelerator as discussed. However, applications could go well beyond particle physics research. Laser accelerators could drive compact X-ray free-electron lasers, comparable to SLAC’s Linac Coherent Light Source, that are all-purpose tools for a wide range of research.

“It could also help enable compact accelerators and X-ray devices for security scanning, medical therapy and imaging, and research in biology and materials science,” said Joel England, the SLAC physicist who led the experiments.

This doesn’t mean, pocket-sized particle accelerator will start rolling in. Turning the accelerator on a chip into a full-fledged tabletop accelerator will require a more compact way to get the electrons up to speed before they enter the device.

“We still have a number of challenges before this technology becomes practical for real-world use, but eventually it would substantially reduce the size and cost of future high-energy particle colliders for exploring the world of fundamental particles and forces,” said Joel England.

The achievement was reported in the journal Nature. Find out more how the mini-particle accelerator works by watching the video below.

share Share

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

Mars Dust Storms Can Engulf Entire Planet, Shutting Down Rovers and Endangering Astronauts — Now We Know Why

Warm days may ignite the Red Planet’s huge dust storms.

Scientists Built a Radioactive Diamond Battery That Could Last Longer Than Human Civilization

A tiny diamond battery could power devices for thousands of years.

The Universe’s Expansion Rate Is Breaking Physics and JWST’s New Data Makes It Worse

New data confirms a puzzling rift in the universe's expansion rate.

The explosive secret behind the squirting cucumber is finally out

Scientists finally decode the secret mechanism that has been driving the peculiar seed dispersion action of squirting cucumber.

Mysterious eerie blue lights erupt during avalanche — and no one is sure why

Could this be triboluminescence at scale?

In 1911, Einstein wrote a letter to Marie Curie, telling her to ignore the haters

The gist of it is simple: "ignore the trolls".

Scientists Turn a Quantum Computer Into a Time Crystal That Never Stops

Quantum computing meets the timeless oscillation of time crystals in a breakthrough experiment.

China Buids the World’s Most Powerful Hypergravity Facility. It Can Simulate Gravity 1,900 Times Stronger Than Earth's

Chinese scientists now have access to the world's most powerful hypergravity facility.

Scientists Reveal What a Single Photon Really Looks Like for the First Time

The shape of a photon Is finally revealed by physicists.