homehome Home chatchat Notifications


Parkinson's tremors significantly reduced after electrical signal cancels brain waves

For most Parkinson’s patients, tremors associated with this devastating disease make living a normal life extremely difficult, if not impossible. Cooking, eating, even tying one’s shoelaces, basically anything that implies limb manipulation is very difficult to achieve by one’s self. A novel type of therapy developed by physicians at Oxford University, however, brings a glimmer […]

Tibi Puiu
February 19, 2013 @ 7:27 am

share Share

Credit: John-Stuart Brittain et al./Current Biology

Credit: John-Stuart Brittain et al./Current Biology

For most Parkinson’s patients, tremors associated with this devastating disease make living a normal life extremely difficult, if not impossible. Cooking, eating, even tying one’s shoelaces, basically anything that implies limb manipulation is very difficult to achieve by one’s self. A novel type of therapy developed by physicians at Oxford University, however, brings a glimmer of hope that Parkinson’s patients might have the chance at living a normal life once again; their findings showed a 50% decrease in tremors after applying an electrical current to key motor areas of the brain.

There are a number of drugs and treatments that address Parkinson’s tremors. However most patients don’t respond properly or only show mild improvements – far from enough. The best improvements in alleviating tremors have been found using  deep brain stimulation, a technique that involves surgery to insert electrodes deep into the brain itself to deliver electrical impulses.

As you can imagine, this particular method isn’t really appealing to patients seeing how their skulls need to be open and have electrodes fitted inside the brain – not to mention the health hazards that might surface, like brain bleeding and the likes.

Oxford University researchers have reached much of the same or better results as brain stimulation using a method that does not imply surgery, by applying electrical signals with electrodes fitted on the scalp, instead of embedded inside the brain itself.

Cancelling Parkinson’s tremor causing brain waves

Credit: John-Stuart Brittain et al./Current Biology

Credit: John-Stuart Brittain et al./Current Biology

Called transcranial alternating current stimulation (TACS), the technique involves placing electrode pads on the outside of the patient’s skull, one close to the base of the neck and one on the head, above the motor cortex (part of the brain implicated in controlling the tremors).

The science behind it is simply mind-boggling. Basically, our brain operates in brain waves, so by stimulating the brain with matching waves, one can amplify that particular wave or, in the case of Parkinson’s caused tremor brain waves, cancel them out.

Thus, a small alternating current stimulation is passed through the electrodes that delivers an oscillating tremor signal at 180 out of phase to cancel it out, suppressing the physical tremor. As an analogy, some of you might be familiar with noise-canceling headphones: when you turn them on, the headphones detect ambient noise and deliver a signal that cancels it out so you basically don’t hear anything besides a faint beep. Achieving a similar effect, however, with particular brain waves is simply amazing!

The technique was tested on 15 people with Parkinson’s disease at Oxford‘s John Radcliffe Hospital, and resulted in a 50%  reduction in resting tremors among the patients.

“Tremors experienced by Parkinson’s sufferers can be devastating and any therapy that can suppress or reduce those tremors significantly improves quality of life for patients. We are very hopeful this research may, in time, lead to a therapy that is both successful and carries reduced medical risks. We have proved the principle, now we have to optimize it and adapt it so it is able to be used in patients.”

Now, the next step the researchers plan on making is to devise electrodes small, yet still potent enough to work, that can be implanted beneath the skin of patient’s skull, as well as a portable system that detects the brain signal and adjusts the delivered stimulation to cancel it out.

Findings were reported in the journal Current Biology.

 

 

share Share

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

An Experimental Drug Just Slashed Genetic Heart Risk by 94%

One in 10 people carry this genetic heart risk. There's never been a treatment — until now.

We’re Getting Very Close to a Birth Control Pill for Men

Scientists may have just cracked the code for male birth control.

A New Antibiotic Was Hiding in Backyard Dirt and It Might Save Millions

A new antibiotic works when others fail.

A Week of Cold Plunges Could Help Your Cells Fight Aging and Disease

Cold exposure "trains" cells to be more efficient at cleaning themselves up.

England will start giving morning-after pill for free

Free contraception in the UK clashes starkly with the US under Trump's shadow.

A Gene-Edited Pig Liver Was Hooked to a Human for 10 Days and It Actually Worked

Breakthrough transplant raises hopes for patients needing liver support or awaiting transplants.

Revenge of the Fish: A Bone Pierced Through Man’s Gut and Stabbed His Liver

A swallowed bone made its way from the gut to the liver, causing weeks of mystery pain

AI-Assisted Wearable Device 'Speaks' For People With Dysfunctional Vocal Cords

Speech-language pathology is an area of medical science based on the mechanics of voice production and the evaluation, treatment and prevention of communication. AI-assisted technology is now part of treatment options for conditions that affect speech, such as stuttering or the inability to control specific muscles after a stroke.  UCLA bioengineers have created a device […]

Scientists sawed a human brain into 703 cubes to map its energy system for the first time

Your brain burns 20 percent of your body’s energy and now we know exactly where it goes.