homehome Home chatchat Notifications


Solar cells that mimic leaves put organic systems back in the picture

As solar cells, and obviously the solar energy sector in consequence, become ever more popular spurred by increased demand through out the world, scientists today are currently interested in two major keypoints: increasing efficiency – the most important and immediate goal at hand – and making solar cells as cheap as possible without, obviously, compromising […]

Tibi Puiu
August 9, 2013 @ 10:27 am

share Share

prototype-biomimetic-solar-cell

A prototype of the leaf-inspired solar cell. Right corner: 1cm scale bar.

As solar cells, and obviously the solar energy sector in consequence, become ever more popular spurred by increased demand through out the world, scientists today are currently interested in two major keypoints: increasing efficiency – the most important and immediate goal at hand – and making solar cells as cheap as possible without, obviously, compromising quality (solar conversion efficiency). Solar cells made out of organic material have been studied for a while in hopes of addressing the latter keypoint,  as these could be manufactured a lot cheaper while also being more environmentally friendly than silicon-based counterparts, currently the de facto used in the industry.

Organic solar cells come with a major drawback though. They deteriorate really fast due to ultraviolet ray stress, which has prompted many to deem them unfeasible. Now  Orlin Velev and Hyung-Jun Koo, two researchers at North Carolina State University, show that there’s a way around this after they designed an innovative system that constantly replenishes the solar collecting organic material, inspired by the branching vascular channels that circulate life-sustaining nutrients in leaves and human hands.

Schematic of biomimetic photovoltaic device (photo above) with microfluidic replenishment network.Left: The white arrows indicate the convection-dominant transport of dye and electrolyte molecules along the microfluidic channels. Inset: cross-section view across the dotted yellow line. Tin oxide nanoparticles and platinum catalysts are deposited on the photoanode and the counter electrode, respectively. The red arrows indicate the lateral diffusive/convective transport between the source channels and drain channels.

Schematic of biomimetic photovoltaic device (photo above) with microfluidic replenishment network.Left: The white arrows indicate the convection-dominant transport of dye and electrolyte molecules along the microfluidic channels. Inset: cross-section view across the dotted yellow line. Tin oxide nanoparticles and platinum catalysts are deposited on the photoanode and the counter electrode, respectively. The red arrows indicate the lateral diffusive/convective transport between the source channels and drain channels.

The nature-mimicking or biomimetic devices that they designed are classed as  dye-sensitized solar cells (DSSCs) since light is captured and converted into electricity by light-sensitive organic-dye molecules. These are very inexpensive to produce and supply, and are circulated along microchannels.

“Organic material in DSSCs tends to degrade, so we looked to nature to solve the problem,” Velev said. “We considered how the branched network in a leaf maintains water and nutrient levels throughout the leaf. Our microchannel solar cell design works in a similar way.

“Photovoltaic cells rendered ineffective by high intensities of ultraviolet rays were regenerated by pumping fresh dye into the channels while cycling the exhausted dye out of the cell. This process restores the device’s effectiveness in producing electricity over multiple cycles.”

The DSSCs were reported in the journal Scientific Reports. It’s worth mentioning some other biomimetic solar cells that are currently being employed, but whose design process and working principle take an alternate root. These are typically referred to as “artificial leaf” solar cell systems, and as you might guess work by mimicking as closely as possible plant photosynthesis. These systems produce hydrogen fuel, which can be used to power anything even electrical generators, only out of water and light. They’re still pretty far from becoming reliable, but we’re getting there.

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

America’s Favorite Christmas Cookies in 2024: A State-by-State Map

Christmas cookie preferences are anything but predictable.

The 2,500-Year-Old Gut Remedy That Science Just Rediscovered

A forgotten ancient clay called Lemnian Earth, combined with a fungus, shows powerful antibacterial effects and promotes gut health in mice.

Should we treat Mars as a space archaeology museum? This researcher believes so

Mars isn’t just a cold, barren rock. Anthropologists argue that the tracks of rovers and broken probes are archaeological treasures.

Hidden for Centuries, the World’s Largest Coral Colony Was Mistaken for a Shipwreck

This massive coral oasis offers a rare glimmer of hope.

This Supermassive Black Hole Shot Out a Jet of Energy Unlike Anything We've Seen Before

A gamma-ray flare from a black hole 6.5 billion times the Sun’s mass leaves scientists stunned.

Scientists Say Antimatter Rockets Could Get Us to the Stars Within a Lifetime — Here’s the Catch

The most explosive fuel in the universe could power humanity’s first starship.

Superflares on Sun-Like Stars Are Much More Common Than We Thought

Sun-like stars release massive quantities of radiation into space more often than previously believed.

This Wild Quasiparticle Switches Between Having Mass and Being Massless. It All Depends on the Direction It Travels

Scientists have stumbled upon the semi-Dirac fermion, first predicted 16 years ago.

New Study Suggests GPT Can Outsmart Most Exams, But It Has a Weakness

Professors should probably start changing how they evaluate students.