homehome Home chatchat Notifications


Researchers coax neurons into regenerating and restore vision in mice

This could allow us to restore vision, mobility or fight diseases like Alzheimer's.

Alexandru Micu
July 12, 2016 @ 2:13 pm

share Share

Stanford University researchers have developed a method that allows them to regrow and form connections between neurons involved in vision. The method has been only tested on mice but the results suggest that mammalian brain cells can be restored after being damaged — meaning maladies including glaucoma, Alzheimer’s disease, and spinal cord injuries might be more repairable than has long been believed.

Neurons are the building blocks of our nervous system.
Image via youtube

It has long been believed that mammalian brain cells can’t regrow, but the new study shows that it’s possible. The team reports that they’ve managed to regenerate the axons of retinal ganglion cells, and although fewer than 5 percent of cells responded to the method, it was enough to make a difference in the mice’s vision.

“The brain is very good at coping with deprived inputs,” says Andrew Huberman, the Stanford neurobiologist who led the work. “The study also supports the idea that we may not need to regenerate every neuron in a system to get meaningful recovery.”

“I think it’s a significant step forward toward getting to the point where we really can regenerate optic nerves,” says Johns Hopkins professor of ophthalmology Don Zack, who was not involved in the research. “[It is] one more indication that it may be possible to bring that ability back in humans.”

The study shows that a regenerating axon can grow in the right direction, forming the connections needed to restore function.

“They can essentially remember their developmental history and find their way home,” Huberman says. “This has been the next major milestone in the field of neural regeneration.”

Once central nervous system cells reach maturity, they flip a genetic switch and never grow again. The team used genetic manipulation to flip this switch back on, activating the so-called “mammalian target of rapamycin” (mTOR) signaling pathway, which helps stimulate growth. At the same time, they exercised the damaged eye by showing mice a display of moving, high-contrast stripes.

“When we combined those two [methods]—molecular chicanery with electrical activity—we saw this incredible synergistic effect,” Huberman says. “The neurons grew enormous distances—500 times longer and faster than they would ordinarily.”

They observed that by covering the mice’s good eyes so they looked at the stripes only with their damaged eyes, the neurons regenerated faster. The team used a virus to deliver the altered genes to their mice, but study co-author Zhigang He believes there may be simpler ways to achieve this, such as pills, for human treatment. He, who developed the mTOR procedure, isn’t sure how the findings will impact human patients. He notes that a dual procedure, similar to that they used for the rats, hasn’t yet been developed for humans. He also pointed out that our retinal cells would have to grow a lot more than a mouse’s to rewire vision.

“The human optic nerve has to regenerate not on the scale of millimeters but on the scale of centimeters,” he explains.

Further research is needed to figure out the best use of this method for patients.

“Before, there was nothing to do” about damage to retinal nerves or other brain cells, says He, whose lab studies both retinal and spinal cord damage. “Now, we need to think about what type of patient might be most likely to benefit from the treatment.”

Huberman hopes that his method will be usable within a few years to help patients with early-stage glaucoma avoid the degeneration that leads to blindness.

“There are going to be many, many cases in which glaucoma could be potentially treated by enhancing the neural activity of retinal ganglion cells,” he says.

The findings also suggest that other brain cells could be determined to self-repair, Huberman says. Potential applications include restoring some movement after spinal cord damage, fighting memory-related diseases such as Alzheimer’s and even helping patients manage the symptoms of autism.

The full paper, titled “Neural activity promotes long-distance, target-specific regeneration of adult retinal axons” has been published in the journal Nature Neuroscience.

share Share

These researchers counted the trees in China using lasers

The answer is 142 billion. Plus or minus a few, of course.

If you use ChatGPT a lot, this study has some concerning findings for you

So, umm, AI is not your friend — literally.

New Diagnostic Breakthrough Identifies Bacteria With Almost 100% Precision in Hours, Not Days

A new method identifies deadly pathogens with nearly perfect accuracy in just three hours.

Revenge of the Fish: A Bone Pierced Through Man’s Gut and Stabbed His Liver

A swallowed bone made its way from the gut to the liver, causing weeks of mystery pain

Miyazaki Hates Your Ghibli-fied Photos and They're Probably a Copyright Breach Too

“I strongly feel that this is an insult to life itself,” he said.

This Is Why Human Faces Look So Different From Neanderthals

Your face stops growing in a way that neanderthals' never did.

AI-Assisted Wearable Device 'Speaks' For People With Dysfunctional Vocal Cords

Speech-language pathology is an area of medical science based on the mechanics of voice production and the evaluation, treatment and prevention of communication. AI-assisted technology is now part of treatment options for conditions that affect speech, such as stuttering or the inability to control specific muscles after a stroke.  UCLA bioengineers have created a device […]

Scientists sawed a human brain into 703 cubes to map its energy system for the first time

Your brain burns 20 percent of your body’s energy and now we know exactly where it goes.

This Tamagotchi Vape Dies If You Don’t Keep Puffing

Yes. You read that correctly. The Stupid Hackathon is an event like no other.

This Tiny Nuclear Battery Could Last for Thousands of Years Without Charging

The radiocarbon battery is supposed to be safe for everyday operations.