homehome Home chatchat Notifications


Beam me up Scotty - NASA researches tractor beam technology

Trekkies might rejoice at the news that NASA has recently decided to fund a research group employed to study how tractor beam technology might become applicable in space exploration missions. The agency has awarded a $100,000 initial grant to a team of reserachers who will study  three experimental techniques involving capturing small-particle samples with lasers. […]

Tibi Puiu
November 2, 2011 @ 7:11 am

share Share

NASA is studying different techniques for corralling particles and transporting them via laser light to instruments on rovers and orbiting spacecraft. (c) Dr. Paul Stysley

NASA is studying different techniques for corralling particles and transporting them via laser light to instruments on rovers and orbiting spacecraft. (c) Dr. Paul Stysley

Trekkies might rejoice at the news that NASA has recently decided to fund a research group employed to study how tractor beam technology might become applicable in space exploration missions. The agency has awarded a $100,000 initial grant to a team of reserachers who will study  three experimental techniques involving capturing small-particle samples with lasers.

“Though a mainstay in science fiction, and Star Trek in particular, laser-based trapping isn’t fanciful or beyond current technological know-how,” says Paul Stysley, part of the team researching tractor beam possibilities.

“The original thought was that we could use tractor beams for cleaning up orbital debris. But to pull something that huge would be almost impossible – at least now. That’s when it bubbled up that perhaps we could use the same approach for sample collection.”

ser experts (from left to right) Barry Coyle, Paul Stysley, and Demetrios Poulios have won NASA funding to study advanced technologies for collecting extraterrestrial particle samples. (c) NASA

ser experts (from left to right) Barry Coyle, Paul Stysley, and Demetrios Poulios have won NASA funding to study advanced technologies for collecting extraterrestrial particle samples. (c) NASA

One of the three studied techniques involved using what’s called ‘optical tweezers’. This method uses two counter-propagating beams of light, which outputs a ring-like geometry capable of pulling particles inside the dark core of the overlapping beams. Changing the intensity of one beam heats air around trapped particles and can cause them to travel toward a probe, however for this to work the technique requires an atmosphere. Not a problem if applied to Mars missions, though.

Rovers employed so far on the surface of Mars using a drill to probe samples or soil, however this requires a lot of time and the drill is constantly subjected to wear, and thus malfunctioning. A laser could prove to be a more interesting alternative – pointed towards various minerals, it would zap them and use its tractor beam to bring in the particles to the probe for analysis. Laser beams shot through the atmosphere could also provide valuable information on how gases change in response to day-night cycles on Mars.

For deep space missions, where the medium is vacuum, the researchers are considering a technique that employs optical solenoid beams, whose intensity peaks spiral around the axis of propagation, creating a force that pulls particles back along the entire beam of light. The main advantage with this method is that solenoid beams are capable of pulling in material from far away, which would be useful for satellites orbiting high above a comet or asteroid.

The third technique involves a Bessel beam and, so far, only exists in theoretical status, as of yet to be demonstrated in the lab. Bessel beams generate rings of light unto a contact surface, unlike a regular laser which casts a simple dot. These rings are thought to induce electric and magnetic fields in the path of an object, enough to trap and transport particle samples.

“We want to make sure we thoroughly understand these methods. We have hope that one of these will work for our purposes,” says team member Barry Coyle.

“We’re at the starting gate on this. This is a new application that no one has claimed yet.”

NASA

share Share

Doctors Restored Hearing in Children and Adults With a Single Shot

A one-time injection helped some patients hear for the first time in their lives

Newborns Feel Pain Long Before They Can Understand It

Tiny brains register pain early, but lack the networks to interpret or respond to it

Cheese Before Bed Might Actually Be Giving You Nightmares

Eating dairy or sweets late at night may fuel disturbing dreams, new study finds.

Scientists Just Proved Ancient Humans Were in North America 10,000 Years Earlier Than We Thought

Ancient mud tells a story critics can no longer ignore

Scientists Detect Light Traversing the Entire Human Head—Opening a Window to the Brain’s Deepest Regions

Researchers are challenging the limits of optical brain imaging.

Climate Change Unleashed a Hidden Wave That Triggered a Planetary Tremor

The Earth was trembling every 90 seconds. Now, we know why.

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.

So, Where Is The Center of the Universe?

About a century ago, scientists were struggling to reconcile what seemed a contradiction in Albert Einstein’s theory of general relativity. Published in 1915, and already widely accepted worldwide by physicists and mathematicians, the theory assumed the universe was static – unchanging, unmoving and immutable. In short, Einstein believed the size and shape of the universe […]

Physicists Say Light Can Be Made From Nothing and Now They Have the Simulation to Prove It

An Oxford-led team simulation just brought one of physics' weirdest predictions to life.

The Real Sound of Clapping Isn’t From Your Hands Hitting Each Other

A simple gesture hides a complex interplay of air, flesh, and fluid mechanics.