ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Research → Discoveries

Nanoparticle pill delivers insulin orally with 11-fold efficiency

Tibi PuiubyTibi Puiu
December 2, 2013 - Updated on January 6, 2014
in Discoveries, Health, News, Research
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Healthy habits dramatically reduce risk of dementia, diabetes and heart disease
White paint might be causing a lot of Type 2 diabetes, preliminary research finds
Fat grizzlies stay diabetes free thanks to protein shut down
Modified immune cells could be a long-term treatment for type 1 diabetes

Drug delivery encapsulated in tiny nanoparticles are thoroughly studied with great interest because they offer the chance to deliver treatments more efficiently. That’s not all though – with nanoparticle pills you can selectively target key areas and deliver drugs which otherwise wouldn’t be possible without using invasive methods. Take diabetes  for instance – patients need to take shots of insulin on a regular basis and this is the only way the drug can be delivered effectively so far. A team of researchers at MIT have demonstrated, however, insulin absorption in the bloodstream of mice through nanoparticle pill oral ingestion. The findings could pave the way for other kinds of drugs becoming orally ingestistable, which are currently delivered only through invasive methods, like those targeting cancer.

“If you were a patient and you had a choice, there’s just no question: Patients would always prefer drugs they can take orally,” says Robert Langer, the David H. Koch Institute Professor at MIT, a member of MIT’s Koch Institute for Integrative Cancer Research, and an author of the Science Translational Medicine paper.

Of course, this is not the first research we’ve reported that discusses oral nanoparticle delivery. The key finding from MIT lies in the way the drugs bind to the intestinal inner wall. Previously, it was shown that when feeding on their mother’s milk, babies absorb antibodies contained in the milk to boost their own immune defense. These antibodies are absorbed through  cell surface receptor called the FcR, which allows them to enter the blood stream.

The nano-pills of the future

Exploiting this biophysical processes, the researchers coated their nanoparticles containing the drug payload (insulin) with Fc proteins which attach themselves to the FcR receptors. Once attached to the receptors, the particles bring along the bio-compatible nanoparticles along with them.

After administering the nanoparticles oral to mice, the researchers measured 11-fold efficiency of insulin absorption in the bloodstream than nanoparticles devoid of the Fc protein coating.

“It illustrates a very general concept where we can use these receptors to traffic nanoparticles that could contain pretty much anything. Any molecule that has difficulty crossing the barrier could be loaded in the nanoparticle and trafficked across,” says  Rohit Karnik, an MIT associate professor of mechanical engineering.

small-intestine
image source: diet777.com

That’s very interesting, but it gets even more promising when you consider nanoparticle drug delivery can be used for treating all kinds of diseases that currently rely on invasive operations; i.e. cancer. The are numerous challenges to orally ingested nanoparticles though. Like a biological wall, the intestinal lining typically keeps drugs from reaching tumors via the blood stream.

“The key challenge is how to make a nanoparticle get through this barrier of cells. Whenever cells want to form a barrier, they make these attachments from cell to cell, analogous to a brick wall where the bricks are the cells and the mortar is the attachments, and nothing can penetrate that wall,” said  Omid Farokhzad, director of the Laboratory of Nanomedicine and Biomaterials at BWH.

The present research illustrates that intestinal cells can be breached, proving oral nanoparticle delivery can be attained. Further animal tests and experiments using other types of drugs are planned.

“If you can penetrate the mucosa in the intestine, maybe next you can penetrate the mucosa in the lungs, maybe the blood-brain barrier, maybe the placental barrier,” said Farokhzad.

Tags: diabetesdrug deliveryinsulinnanoparticlesmall intestine

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Health

Drinking Sugar May Be Far Worse for You Than Eating It, Scientists Say

byTibi Puiu
3 weeks ago
Health

The world is facing a rising dementia crisis. The worst is in China

byMihai Andrei
2 months ago
Health

Your Gut Bacteria Are Eating More Than We Thought and That’s a Good Thing

byAlexandra Gerea
4 months ago
Health

Just Five Days of Junk Food Can Throw Off Your Brain’s Metabolism

byMihai Andrei
4 months ago

Recent news

China Resurrected an Abandoned Soviet ‘Sea Monster’ That’s Part Airplane, Part Hovercraft

June 30, 2025
great white shark

This Shark Expert Has Spent Decades Studying Attacks and Says We’ve Been Afraid for the Wrong Reasons

June 30, 2025

A Rocket Carried Cannabis Seeds and 166 Human Remains into Space But Their Capsule Never Made It Back

June 30, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.