homehome Home chatchat Notifications


World's most precise clock unveiled loses one “tick” in 10^18 “tocks”

While time can be viewed in very abstract terms, man has always been aware of it. Early man just needed to look towards the sky, at the sun and the moon, to instantly know that the Universe is moving forward and things are changing. Clocks, along with measures of time like the second, minute, years […]

Tibi Puiu
May 30, 2013 @ 7:45 am

share Share

While time can be viewed in very abstract terms, man has always been aware of it. Early man just needed to look towards the sky, at the sun and the moon, to instantly know that the Universe is moving forward and things are changing. Clocks, along with measures of time like the second, minute, years and so on, came much later out of a need to quantisize this inherent ability to sense change and entropy around him. As technology evolved, so has man’s need for more precise time keeping and for thousands of years clockmaking as evolved from pendulum-based, to mechanical, to digital and most recently to quantum-based means in order to accommodate this need.

Most precise clock in the world

The most accurate clock was just recently unveiled by physicists at the National Institute of Standards and Technology in Boulder, which can keep time with an unprecedented precision of one part in 10-18, equivalent to specifying the age of the known universe to a precision of less than one second or Earth’s diameter to less than the width of an atom.

The working principle of the most precise clock in the world relies on measuring  the frequency of light emitted by an atom when electrons in the ground state jump to another state. To accurately measure this, however, the researchers had to overcome a number of physical phenomenae that interfere with measurements. Any small movement of the atom generates a Doppler effect that shifts the frequency, and then there’s also the Stark shift which also slightly changes atomic frequencies due to stray electric fields.

The error introduced by these quantum phenomenae are trivial and seemingly indistinguishable, but when you’re looking to keep track of time with unprecedented accuracy, everything needs to be accounted for. To build their clock while overcoming these issues, the researchers used a series of ingenious solutions.

A laser was used to bounce light off a mirror to create a standing wave of light which forms a lattice to trap atoms, since its essential to fix the atoms in certain position. The lattice is then filled with ytterbium atoms, and is then yet again zapped by another laser to see the frequency at which the electronic transition occurs. However, electric fields associated with the light generate a Stark shift. The team get around this by choosing a so-called “magic” transition in ytterbium in which both electronic states are shifted by the same amount, leaving the transition frequency unchanged.

The end result is a clock that can measure time loosing only one second for every billion billion seconds. How do you measure the accuracy of a single clock though? Simple, you build two, so that one of them keeps track of the other. Why do we need such accurate clocks though? Well,  time keeping is extremely important and without it, we couldn’t have reliable global positioning systems or synchronize networks and satellites (the military is especially interested in this).

Moreover, modern clocks, being so precise, can be used in a new array of applications never possible until recently. These clocks are so sensitive that they can easily measure the gravitational redshift, in which clocks tick more slowly in more powerful gravitational fields, essentially being capable of sensing changes in height. Clocks today in wide use can sense changes of many meters or kilometers. The clock made at  National Institute of Standards and Technology can sense changes in the order or centimeters.

The most precise clock in the world was described in a paper published in the journal Atomic Physics. [story via Tech review]

 

share Share

This Tiny Nuclear Battery Could Last for Thousands of Years Without Charging

The radiocarbon battery is supposed to be safe for everyday operations.

Earth’s Longest Volcanic Ridge May Be an Underwater Moving Hotspot

Scientists uncover surprising evidence that the Kerguelen hotspot, responsible for the 5,000-kilometer-long Ninetyeast Ridge, exhibited significant motion.

Physicists just explained why the pop of a beer bottle sounds so perfect

A high-speed peek into what really happens when your beer bottle goes “pop.”

New NASA satellite mapped the oceans like never before

We know more about our Moon and Mars than the bottom of our oceans.

Physicists Think They've Found a Way to Harvest Energy from Earth's Rotation — And It Might Be Just Crazy Enough to Work

A wacky-looking hollow device is giving perpetual motion machine vibes.

Did WWI Dazzle Camouflage Actually Work? Scientists Revisit a 105-Year-Old Experiment to Find Out

Painting ships like zebras was a bold move, but it likely didn't fool U-boats. Something else worked though.

New Organic Semiconductor That Spirals Electrons Like a Corkscrew Could Lead to Brighter, More Energy-Efficient Screens

The technology could be applied to not just screens but also quantum computing and spintronics.

Black Holes Might Not Be Cosmic Dead-Ends But Rather the Beginning Of White Holes

From black holes to white holes. Who would've thought?

Cats Actually Have Hundreds of Facial Expressions and They Mirror Each Other to Form an Emotional Bond

Want to befriend a cat? Don't forget to blink or squint back if a cat does the same at you.

Physicist Claims Gravity Might Emerge From Entropy. Could This Unite Quantum Mechanics and Gravity?

A novel theory could finally bridge the gap between quantum physics and general relativity.