homehome Home chatchat Notifications


MIT 'DarkLight' experiment seeks to create dark matter in the lab

Mysterious and elusive, dark matter has escaped scientists time and time again; yet confirming its existence is quintessential to current efforts of studying the Universe. With this in mind, detecting dark matter has become one of the foremost goals in the physics of the 21st century. An experiment at MIT, called DarkLight, aims to prove […]

Tibi Puiu
October 28, 2013 @ 3:39 am

share Share

Mysterious and elusive, dark matter has escaped scientists time and time again; yet confirming its existence is quintessential to current efforts of studying the Universe. With this in mind, detecting dark matter has become one of the foremost goals in the physics of the 21st century. An experiment at MIT, called DarkLight, aims to prove or disprove a certain theory that provides a possible solution to uncovering dark matter by creating its constituent bosons in the lab.

Dark matter is said to make about 23% of the mass-energy density of the universe, in comparison to only 4% normal matter (the matter we can observe), while the rest of the mass-energy density is comprised of dark energy. Dark matter makes up more than half of the total mass of most galaxies, including our own Milky Way, and is known to extend well beyond the visible stars. If models are correct, than dark matter is ubiquitous, even in our solar system yet detecting it has proved to be a herculean challenge.  Since it was first proposed in the 1930s, numerous theories have tried to account for and provide ways of identifying dark matter. So far there have been no confirmed identifications of dark matter with any known — or postulated — candidate.

 Photograph of the prototype constructed by the GEM-TPC collaboration. (C) MIT

Photograph of the prototype constructed by the GEM-TPC collaboration. (C) MIT

One piece of the puzzle is currently being investigated by the DarkLight experiment at MIT. The experiment seeks to prove or disprove a theory which says dark matter is made up of  bosons in the 10 MeV to 10 GeV range – heavy photons dubbed A′ (pronounced “A-prime”). The exact mass of such a particle (if it exists) is unknown.

DarkLight will use Jefferson Lab’s Free Electron Laser to bombard an Oxygen target with a stream of high energy electrons with one megawatt of power, and hopefully create this form of theorized dark matter (A’ particles). Studying the  resonance peak at the A′ mass in the electron-positron invariant mass spectrum would provide the valuable clues necessary to prove or disprove the presence of dark matter through this experiment.

It might take a while before this will happen though. According to the report released by MIT, it will take a couple of years before the DarkLight experimental rig will become operational and another couple of years of smashing electrons to collect data before any conclusive ideas can be drawn.

via ExtremeTech

share Share

This Tiny Nuclear Battery Could Last for Thousands of Years Without Charging

The radiocarbon battery is supposed to be safe for everyday operations.

Earth’s Longest Volcanic Ridge May Be an Underwater Moving Hotspot

Scientists uncover surprising evidence that the Kerguelen hotspot, responsible for the 5,000-kilometer-long Ninetyeast Ridge, exhibited significant motion.

Physicists just explained why the pop of a beer bottle sounds so perfect

A high-speed peek into what really happens when your beer bottle goes “pop.”

New NASA satellite mapped the oceans like never before

We know more about our Moon and Mars than the bottom of our oceans.

Physicists Think They've Found a Way to Harvest Energy from Earth's Rotation — And It Might Be Just Crazy Enough to Work

A wacky-looking hollow device is giving perpetual motion machine vibes.

Did WWI Dazzle Camouflage Actually Work? Scientists Revisit a 105-Year-Old Experiment to Find Out

Painting ships like zebras was a bold move, but it likely didn't fool U-boats. Something else worked though.

New Organic Semiconductor That Spirals Electrons Like a Corkscrew Could Lead to Brighter, More Energy-Efficient Screens

The technology could be applied to not just screens but also quantum computing and spintronics.

Black Holes Might Not Be Cosmic Dead-Ends But Rather the Beginning Of White Holes

From black holes to white holes. Who would've thought?

Cats Actually Have Hundreds of Facial Expressions and They Mirror Each Other to Form an Emotional Bond

Want to befriend a cat? Don't forget to blink or squint back if a cat does the same at you.

Physicist Claims Gravity Might Emerge From Entropy. Could This Unite Quantum Mechanics and Gravity?

A novel theory could finally bridge the gap between quantum physics and general relativity.