homehome Home chatchat Notifications


Scientists make semiconductor-free chip that work similarly to vacuum tubes

Taking hints from pre-1950s technology, researchers devised semiconductor-free electronics that operate faster and can handle more power.

Tibi Puiu
November 9, 2016 @ 2:49 pm

share Share

Scientists have devised a metamaterial that liberates free electrons, sort of like vacuum electronics. The resulting semiconductor-free device operates at speed, wavelength, and power handling far greater than what’s available today.

The semiconductor-free microelectronics device fabricated by the University of California, San Diego. Source: UCSD

The semiconductor-free microelectronics device fabricated by the University of California, San Diego. Source: UCSD

On 10 May 1954, in front of an audience of baffled scientists and engineers, Gordon Teal of Texas Instruments Inc. made one of the most important announcements of the past centuries. Teal carefully pulled out several objects out of his pocket and immediately jaws dropped — these were silicon transistors. Today, probably 95% of all semiconductors — essential materials for any electronics component — are fabricated from silicon, despite the first transistor was a germanium device.

Before silicon or germanium transistors came along, however, all electronics used vacuum tubes in their construction. These tubes consumed a great deal of electrical power and gave off enormous heat, so the transistor was seen as a fantastic upgrade, ushering a new age of miniaturization that continues to this day. However, these wonder electronics aren’t perfect. Some electronics applications feel the limits of silicon transistors because the velocity of electrons is limited by the resistance of the material. To get these electrons flowing through the band gap between a semiconductor’s insulating and conducting properties, you need to supply more ‘juice’.

Researchers at the University of California, San Diego (UCSD) sought to get around this problem by taking some hints from ancient electronics history and reverting back to the principle of operation of tube electronics which involves free electrons. 

Electron scanning microscope image of the metasurface laced with gold nanoparticles. Credit: UCSD

Electron scanning microscope image of the metasurface laced with gold nanoparticles. Credit: UCSD

Of course, there’ are many reasons why vacuum tubes aren’t used in modern electronics, one of them being that dislodging free electrons at the nanoscale is very challenging. The researchers got around this issue by making a metamaterial which a patterned surface to liberate electrons from gold nanostructures. The new device can be activated by low DC voltage and a low-power laser, allowing it to operate with a 1,000% increase in conductivity, as reported in Nature

These sort of devices could lead to semiconductor-free switches, transistors, photo detectors or photovoltaic cells that are capable of handling much more power than traditional devices. That’s not to say that your next smartphone or computer will stop using semiconductors — no chance, but some applications could hugely benefit from vacuum tube style switching.

“This certainly won’t replace all semiconductor devices, but it may be the best approach for certain specialty applications, such as very high frequencies or high-power devices,” says Dan Sievenpiper, professor of electrical engineering at UCSD.

Such an implementation may be a key to developing semiconductor-free switches, transistors, photo detectors or even photovoltaic cells in the future that are faster and capable of handling more power than traditional devices.

share Share

What Happens When You Throw a Paper Plane From Space? These Physicists Found Out

A simulated A4 paper plane takes a death dive from the ISS for science.

A New Vaccine Could Stop One of the Deadliest Forms of Breast Cancer Before It Starts

A phase 1 trial hints at a new era in cancer prevention

After 700 Years Underwater Divers Recovered 80-Ton Blocks from the Long-Lost Lighthouse of Alexandria

Divered recover 22 colossal blocks from one of the ancient world's greatest marvels.

Scientists Discover 9,000 Miles of Ancient Riverbeds on Mars. The Red Planet May Have Been Wet for Millions of Years

A new look at Mars makes you wonder just how wet it really was.

This Is Why Human Faces Look So Different From Neanderthals

Your face stops growing in a way that neanderthals' never did.

Ozempic Is Changing More Than Waistlines as Scientists Wise Up to Concerning Side Effects

But GLP-1 drugs also offer many benefits beyond weight loss.

Researchers stop Parkinson's symptoms in mice using a copper supplement. Could humans be next?

Could we stop Parkinson's by feeding neurons copper?

There's a massive, ancient river system under Antarctica's ice sheet

This has big implications for our climate models.

I Don’t Know Who Needs to Hear This, But It's Okay to Drink Coffee in the Summer

Finally, some good news.

New Blood Test Reveals How Fast Your Organs Are Aging. Your Brain’s Biological Age May Hold the Key to How Long You Live

People with "older" brains had a much higher risk of dying compared to "younger" brains.