homehome Home chatchat Notifications


Scientists make semiconductor-free chip that work similarly to vacuum tubes

Taking hints from pre-1950s technology, researchers devised semiconductor-free electronics that operate faster and can handle more power.

Tibi Puiu
November 9, 2016 @ 2:49 pm

share Share

Scientists have devised a metamaterial that liberates free electrons, sort of like vacuum electronics. The resulting semiconductor-free device operates at speed, wavelength, and power handling far greater than what’s available today.

The semiconductor-free microelectronics device fabricated by the University of California, San Diego. Source: UCSD

The semiconductor-free microelectronics device fabricated by the University of California, San Diego. Source: UCSD

On 10 May 1954, in front of an audience of baffled scientists and engineers, Gordon Teal of Texas Instruments Inc. made one of the most important announcements of the past centuries. Teal carefully pulled out several objects out of his pocket and immediately jaws dropped — these were silicon transistors. Today, probably 95% of all semiconductors — essential materials for any electronics component — are fabricated from silicon, despite the first transistor was a germanium device.

Before silicon or germanium transistors came along, however, all electronics used vacuum tubes in their construction. These tubes consumed a great deal of electrical power and gave off enormous heat, so the transistor was seen as a fantastic upgrade, ushering a new age of miniaturization that continues to this day. However, these wonder electronics aren’t perfect. Some electronics applications feel the limits of silicon transistors because the velocity of electrons is limited by the resistance of the material. To get these electrons flowing through the band gap between a semiconductor’s insulating and conducting properties, you need to supply more ‘juice’.

Researchers at the University of California, San Diego (UCSD) sought to get around this problem by taking some hints from ancient electronics history and reverting back to the principle of operation of tube electronics which involves free electrons. 

Electron scanning microscope image of the metasurface laced with gold nanoparticles. Credit: UCSD

Electron scanning microscope image of the metasurface laced with gold nanoparticles. Credit: UCSD

Of course, there’ are many reasons why vacuum tubes aren’t used in modern electronics, one of them being that dislodging free electrons at the nanoscale is very challenging. The researchers got around this issue by making a metamaterial which a patterned surface to liberate electrons from gold nanostructures. The new device can be activated by low DC voltage and a low-power laser, allowing it to operate with a 1,000% increase in conductivity, as reported in Nature

These sort of devices could lead to semiconductor-free switches, transistors, photo detectors or photovoltaic cells that are capable of handling much more power than traditional devices. That’s not to say that your next smartphone or computer will stop using semiconductors — no chance, but some applications could hugely benefit from vacuum tube style switching.

“This certainly won’t replace all semiconductor devices, but it may be the best approach for certain specialty applications, such as very high frequencies or high-power devices,” says Dan Sievenpiper, professor of electrical engineering at UCSD.

Such an implementation may be a key to developing semiconductor-free switches, transistors, photo detectors or even photovoltaic cells in the future that are faster and capable of handling more power than traditional devices.

share Share

New Liquid Uranium Rocket Could Halve Trip to Mars

Liquid uranium rockets could make the Red Planet a six-month commute.

Scientists think they found evidence of a hidden planet beyond Neptune and they are calling it Planet Y

A planet more massive than Mercury could be lurking beyond the orbit of Pluto.

People Who Keep Score in Relationships Are More Likely to End Up Unhappy

A 13-year study shows that keeping score in love quietly chips away at happiness.

NASA invented wheels that never get punctured — and you can now buy them

Would you use this type of tire?

Does My Red Look Like Your Red? The Age-Old Question Just Got A Scientific Answer and It Changes How We Think About Color

Scientists found that our brains process colors in surprisingly similar ways.

Why Blue Eyes Aren’t Really Blue: The Surprising Reason Blue Eyes Are Actually an Optical Illusion

What if the piercing blue of someone’s eyes isn’t color at all, but a trick of light?

Meet the Bumpy Snailfish: An Adorable, Newly Discovered Deep Sea Species That Looks Like It Is Smiling

Bumpy, dark, and sleek—three newly described snailfish species reveal a world still unknown.

Scientists Just Found Arctic Algae That Can Move in Ice at –15°C

The algae at the bottom of the world are alive, mobile, and rewriting biology’s rulebook.

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.