homehome Home chatchat Notifications


Scientists count microscopic particles without a microscope

Counting microscopic particles is hard, but researchers from Russia and Australia believe they've found a way to make it easier.

Mihai Andrei
August 24, 2016 @ 3:25 pm

share Share

Counting microscopic particles is hard, but researchers from Russia and Australia believe they’ve found a way to make it easier.

The process - image via ITMO University.

The process – image via ITMO University.

The principle is fairly simple. A research team from ITMO University, Ioffe Institute, and Australian National University passed a laser beam through an optic material riddled with microscopic particles and then projected it onto a screen. The screen showed a characteristic pattern consisting of numerous bright spots and the number of these bright spots corresponded to exactly to the number of scattering microscopic particles in the optical material.

“The light senses heterogeneity,” says Mikhail Rybin, first author of the paper, senior researcher at the Department of Nanophotonics and Metamaterials at ITMO University.

“We found out that by looking at the pattern it is possible to determine the precise number of scatterers in the material. This helps understand not only the type of the sample lattice (square, triangular), but also establish its structure (20 to 20 particles, or 30 to 15) just by counting the light spots on the screen”.

It’s very simple but also very effective. You shine a laser beam through the material and then onto a projector. The different structure of the material will cause light to diffract, and the result will be visible on the projector.

“Depending on the shape and relative position of the scatterers, the light wave continues to propagate differently behind the sample. In other words, the structure of the sample affects the diffraction pattern, which will be projected on the screen.

Mikhail Rybin at work. Photo via ITMO University.

Mikhail Rybin at work. Photo via ITMO University.

The new method is a much more affordable option to expensive electron or atomic force microscopy and doesn’t damage the sample at all. It’s also extremely easy to use.

“Even a schoolboy can buy a laser pointer, adapt a small lens to focus the light better, fix the sample and shine a laser beam on it,” notes Mikhail Rybin. “In addition, our method makes it possible to study optical materials without changing their structure, in contrast to electron microscopy, where the sample surface has to be covered with conductive metal layer, which impairs optical properties of the sample”.

The method can be extremely useful for constructing and assessing metamaterials. They tested it for two classes of such materials: photonic crystals and metasurfaces. Photonic crystals are periodic optical nanostructures which affect the motion of photons in much the same way that ionic lattices affect electrons in solids. When light passes through one, it generates a fancy pattern on the screen behind the sample.

In the case of a metasurface – an artificial sheet material – things are a bit more complicated because the material has to be constructed in such a way that the distance between particles is significantly smaller than the wavelength of light. In fact, the difference between a photonic crystal and a metasurface depends on the wavelength of the light.

“For one wavelength, the material will act as a photonic crystal and as a metasurface for another. That is why designing such structures, we can evaluate maximum lattice period with laser,” concludes Mikhail Rybin.

share Share

These "Ants" Use Ultrablack to Warn Predators — and Stay Cool

Velvet ants, actually flightless wasps, boast an ultrablack exoskeleton thanks to dense nanostructures.

AI thought X-rays are connected to eating refried beans or drinking beer

Instead of finding true medical insights, these algorithms sometimes rely on irrelevant factors — leading to misleading results.

AI is scheming to stay online — and then lying to humans

An alarming third party report almost looks like a prequel to Terminator.

The David Mayer case: ChatGPT refuses to say some names. We have an idea why

Who are David Mayer and Brian Hood?

Pee-back time: Anti-Pee Paint Splashes Back at Public Urination

When man piss in wind, wind piss back, a modern Confucius states. In this line, the city of Hamburg ingeniously sought to address its growing public urination problem in the city's busy party center by painting walls with hydrophobic paint. Next time an unsuspecting person wants to take a load off in Hamburg's St. Pauli neighborhood, he might be in for a surprise - it'll splash back at him.

Bye-Bye microplastics: Japanese researchers develop plastic that dissolves into the sea

With less than 10% of global plastic recycled and the rest wreaking havoc on ecosystems, a team of Japanese scientists has created a biodegradable plastic that melts in salt water.

The World’s Thinnest Pasta Is Here — But It’s Not for Eating

Nanopasta might not make it to your dinner plate, but its ultrathin structure could revolutionize wound care.

How CCTV Cameras and AI Can Prevent Floods in Cities

Researchers have developed an AI system using CCTV cameras to monitor culverts, potentially reducing urban flooding by detecting blockages in real-time.

Elon Musk’s social media posts have had a ‘sudden boost’ since July, new research reveals

Is the former Twitter platform now just used as a megaphone?

The world's first wooden satellite was launched into space

The satellite is made from magnolia wood, which was historically used for samurai sheaths.