homehome Home chatchat Notifications


Recycled wool turned into memory textile that always remembers its shape

Researchers have programmed keratin sheets to always fold back to their designed shape -- not matter how complex.

Tibi Puiu
September 4, 2020 @ 11:16 am

share Share

Although it is possible to shape your hair either by straightening or curling, the moment it touches water, the hair will return to its original shape. By exploiting this property, researchers at Harvard University have devised a wool-based material that has hair-like shape memory, which might inspire a new generation of textiles and smart, one-size-fits-all clothing that stretches or shrinks based on a person’s measurements.

3-D printed keratin sheet returns to its pre-programmed origami star shape when bathed in water. Credit: Harvard University.

The secret to hair’s shape memory is keratin, a fibrous protein arranged in a chain of hierarchical structures. One single chain of keratin is itself arranged in a spring-like structure known as the alpha-helix. When two of these chains twist together, they form a coiled-coil structure. Many of these latter structures are assembled into protofilaments, before eventually joining together to form large fibers of hair.

This arrangement of the alpha-helix and connective chemical bonds is one of the reasons why hair is as strong as steel. It also explains the shape memory of the hair strand: when fibers are exposed to a particular stimulus, such as heat from a hair straightener, the spring-like structures uncoil. The fibers will coil back into their original shape when triggered by a new stimulus, such as water.

Engineers at Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) found these characteristics very appealing. They extracted keratin from leftover Agora wool from textile manufacturing, which they then incorporated into a 3-D printable, biocompatible material.

To program a particular shape in the material’s memory, a solution of hydrogen peroxide and monosodium phosphate was employed. The sheet of 3-D printed, recycled keratin can then be molded into any desired shape until triggered to return to its original design.

For instance, one such keratin sheet was programmed to fold into a complex origami star as its original shape. The keratin star was then bathed in water, becoming malleable. The unfolded sheet was then rolled into a tight tube. Once the sheet dried, it was locked into a functional tube. But when the tube was put back in water, it unrolled and folded back into the origami star.

“With this project, we have shown that not only can we recycle wool but we can build things out of the recycled wool that have never been imagined before,” said Kit Parker, the Tarr Family Professor of Bioengineering and Applied Physics at SEAS and senior author of the paper. “The implications for the sustainability of natural resources are clear. With recycled keratin protein, we can do just as much, or more, than what has been done by shearing animals to date and, in doing so, reduce the environmental impact of the textile and fashion industry.”

According to Parker and colleagues, these keratin sheets can be employed in a vast range of applications, from textile to tissue engineering. Imagine brassieres whose cup size and shape can be molded and shaped every day to fit a person’s needs and measurements, for instance.

 “We are continuing to reimagine textiles by using biological molecules as engineering substrates like they have never been used before,” Parker said.

The findings appeared in today the journal Nature Materials.

share Share

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

Mars Dust Storms Can Engulf Entire Planet, Shutting Down Rovers and Endangering Astronauts — Now We Know Why

Warm days may ignite the Red Planet’s huge dust storms.

Scientists Built a Radioactive Diamond Battery That Could Last Longer Than Human Civilization

A tiny diamond battery could power devices for thousands of years.

The Universe’s Expansion Rate Is Breaking Physics and JWST’s New Data Makes It Worse

New data confirms a puzzling rift in the universe's expansion rate.

Pee-back time: Anti-Pee Paint Splashes Back at Public Urination

When man piss in wind, wind piss back, a modern Confucius states. In this line, the city of Hamburg ingeniously sought to address its growing public urination problem in the city's busy party center by painting walls with hydrophobic paint. Next time an unsuspecting person wants to take a load off in Hamburg's St. Pauli neighborhood, he might be in for a surprise - it'll splash back at him.

The explosive secret behind the squirting cucumber is finally out

Scientists finally decode the secret mechanism that has been driving the peculiar seed dispersion action of squirting cucumber.

Mysterious eerie blue lights erupt during avalanche — and no one is sure why

Could this be triboluminescence at scale?

In 1911, Einstein wrote a letter to Marie Curie, telling her to ignore the haters

The gist of it is simple: "ignore the trolls".

Scientists Turn a Quantum Computer Into a Time Crystal That Never Stops

Quantum computing meets the timeless oscillation of time crystals in a breakthrough experiment.

China Buids the World’s Most Powerful Hypergravity Facility. It Can Simulate Gravity 1,900 Times Stronger Than Earth's

Chinese scientists now have access to the world's most powerful hypergravity facility.