homehome Home chatchat Notifications


Scientists grow graphene on silver

The wonder material Graphene, the new wonder material that promises to open a new age in technology, just got a whole lot better. Researchers have reported improved interfacing of graphene with other 2-D materials – basically ‘growing’ graphene on silver. This resulted in an exceptionally pristine sample, presenting opportunities for ultrafast electronics and advanced optics/ […]

Mihai Andrei
November 28, 2013 @ 10:26 am

share Share

The wonder material

Graphene - a one atom thick layer of carbon. photo credit: CORE-Materials

Graphene – a one atom thick layer of carbon. photo credit: CORE-Materials

Graphene, the new wonder material that promises to open a new age in technology, just got a whole lot better. Researchers have reported improved interfacing of graphene with other 2-D materials – basically ‘growing’ graphene on silver. This resulted in an exceptionally pristine sample, presenting opportunities for ultrafast electronics and advanced optics/

“Silver is a widely used material to enhance optical properties,” said Northwestern’s Mark Hersam, a co-author of the paper. “More recently, graphene has emerged as a promising platform for optical technologies. With our recent development of a method for growing graphene on silver, we can now exploit the best attributes of both graphene and silver at the same time.”

Graphene, in case you didn’t know, is simply a one atom thick layer of carbon, featuring numerous remarkable properties which can be used in electronics and not only. Despite being incredibly light, in a way it’s the world’s most powerful material; it’s already making a mark with some practical applications (graphene earbuds, graphene radio, explosive detector, etc), and in the not-so-distant future, it will probably revolutionize transistors and even computer chips. But even so, we have just barely scratched the surface of what this material is capable of doing.

Growing graphene on silver

Typically, graphene is grown on a metal surface by catalytically decomposing hydrocarbons at elevated temperatures – but this method is not really suitable for silver, because silver substrates have a relatively low melting point and are chemically inert.

Using a graphite carbon source, the Northwestern and Argonne researchers were able to grow graphene by depositing atomic carbon, rather than a carbon-based molecular precursor, onto the silver substrate. This growth meant that chemical reactivity was no longer required, and the graphene was developed at lower temperatures.

“Graphene growth and transfer to a variety of substrates has allowed graphene to transform countless scientific fields,” said Brian Kiraly, a Northwestern graduate student in materials science and engineering who worked on the research with Hersam and Nathan Guisinger, a staff scientist at Argonne.

“However, conventional techniques lead to contamination issues and are not compatible with the ultra-clean vacuum environments required for the growth of the latest 2-D materials,” he said. “By growing graphene directly on silver under vacuum, we provide an atomically pristine surface for advanced graphene-based technologies.”

They were also surprised to report another discovery – the graphene they grew was electronically decoupled from the underlying silver substrate, something which was never before reported on any other metal, making this graphene-silver coupling even more promising.

Journal Reference:

Brian Kiraly, Erin V. Iski, Andrew J. Mannix, Brandon L. Fisher, Mark C. Hersam & Nathan P. Guisinger. Solid-source growth and atomic-scale characterization of graphene on Ag(111). Nature Communications 4, Article number: 2804 doi:10.1038/ncomms3804

share Share

Archaeologists Find Neanderthal Stone Tool Technology in China

A surprising cache of stone tools unearthed in China closely resembles Neanderthal tech from Ice Age Europe.

A Software Engineer Created a PDF Bigger Than the Universe and Yes It's Real

Forget country-sized PDFs — someone just made one bigger than the universe.

The World's Tiniest Pacemaker is Smaller Than a Grain of Rice. It's Injected with a Syringe and Works using Light

This new pacemaker is so small doctors could inject it directly into your heart.

Scientists Just Made Cement 17x Tougher — By Looking at Seashells

Cement is a carbon monster — but scientists are taking a cue from seashells to make it tougher, safer, and greener.

Three Secret Russian Satellites Moved Strangely in Orbit and Then Dropped an Unidentified Object

We may be witnessing a glimpse into space warfare.

Researchers Say They’ve Solved One of the Most Annoying Flaws in AI Art

A new method that could finally fix the bizarre distortions in AI-generated images when they're anything but square.

The small town in Germany where both the car and the bicycle were invented

In the quiet German town of Mannheim, two radical inventions—the bicycle and the automobile—took their first wobbly rides and forever changed how the world moves.

Scientists Created a Chymeric Mouse Using Billion-Year-Old Genes That Predate Animals

A mouse was born using prehistoric genes and the results could transform regenerative medicine.

Americans Will Spend 6.5 Billion Hours on Filing Taxes This Year and It’s Costing Them Big

The hidden cost of filing taxes is worse than you think.

Underwater Tool Use: These Rainbow-Colored Fish Smash Shells With Rocks

Wrasse fish crack open shells with rocks in behavior once thought exclusive to mammals and birds.