homehome Home chatchat Notifications


MIT engineers create LED that has 230% efficiency. Thermodynamics laws still in place

A group of researchers at MIT have successfully managed to create a light emitting diode (LED) that has an electrical efficiency greater than 100%. This might sound preposterous, and against everything you learned in physics, however the system is still governed by fundamental laws of thermodynamics. This extraordinary power conversion efficiency was obtained by a […]

Tibi Puiu
March 9, 2012 @ 2:21 pm

share Share

A typical light emitting diode, captioned here only for illustrative purposes. Not the actual LED used in the presently discussed research.

A typical light emitting diode, captioned here only for illustrative purposes. Not the actual LED used in the presently discussed research.

A group of researchers at MIT have successfully managed to create a light emitting diode (LED) that has an electrical efficiency greater than 100%. This might sound preposterous, and against everything you learned in physics, however the system is still governed by fundamental laws of thermodynamics.

This extraordinary power conversion efficiency was obtained by a decrease in applied voltage to an LED with a small band gap. As the voltage was steadily halved, it was observed that the electrical power was reduced by a factor of four, but the light power emitted only dropped by a factor of two. Where this extra energy come from? The key here is lattice vibrations caused by heat coming from the surroundings. Thus, the device’s efficiency is inversely proportional to its output power and diverges as the applied voltage approaches zero. Over 100% efficiency was reached in the experiments, all without violating energy conservation principles.

The best efficiency was reached when such a LED was plugged to 30 picowatts, powering a LED which produced 69 picowatts of light, in the trillionth of a watt order – 230% efficiency. There’s a huge flaw in this otherwise miracle system – the power itself is simply too small to light anything. The principle itself is terribly exciting and the MIT scientists involved in the research are confident these findings will aid new advances in energy-efficiency electromagnetic communication.

Results were described in a recently published paper in the journal Physical Review Letters.

share Share

This Tiny Nuclear Battery Could Last for Thousands of Years Without Charging

The radiocarbon battery is supposed to be safe for everyday operations.

Earth’s Longest Volcanic Ridge May Be an Underwater Moving Hotspot

Scientists uncover surprising evidence that the Kerguelen hotspot, responsible for the 5,000-kilometer-long Ninetyeast Ridge, exhibited significant motion.

Physicists just explained why the pop of a beer bottle sounds so perfect

A high-speed peek into what really happens when your beer bottle goes “pop.”

New NASA satellite mapped the oceans like never before

We know more about our Moon and Mars than the bottom of our oceans.

Physicists Think They've Found a Way to Harvest Energy from Earth's Rotation — And It Might Be Just Crazy Enough to Work

A wacky-looking hollow device is giving perpetual motion machine vibes.

Did WWI Dazzle Camouflage Actually Work? Scientists Revisit a 105-Year-Old Experiment to Find Out

Painting ships like zebras was a bold move, but it likely didn't fool U-boats. Something else worked though.

New Organic Semiconductor That Spirals Electrons Like a Corkscrew Could Lead to Brighter, More Energy-Efficient Screens

The technology could be applied to not just screens but also quantum computing and spintronics.

Black Holes Might Not Be Cosmic Dead-Ends But Rather the Beginning Of White Holes

From black holes to white holes. Who would've thought?

Cats Actually Have Hundreds of Facial Expressions and They Mirror Each Other to Form an Emotional Bond

Want to befriend a cat? Don't forget to blink or squint back if a cat does the same at you.

Physicist Claims Gravity Might Emerge From Entropy. Could This Unite Quantum Mechanics and Gravity?

A novel theory could finally bridge the gap between quantum physics and general relativity.