homehome Home chatchat Notifications


Large Hadron Collider creates mini big bangs and incredible heat

The Large Hadron Collider at CERN has taken another step towards its goal of finding the so called ‘god particle‘: it recently produced the highest temperatures ever obtained through a science experiment. The day before yesterday, 7 November was a big one at the LHC, as the particle collider started smashing lead ions head-on instead […]

Mihai Andrei
November 9, 2010 @ 3:10 pm

share Share

The Large Hadron Collider at CERN has taken another step towards its goal of finding the so called ‘god particle‘: it recently produced the highest temperatures ever obtained through a science experiment. The day before yesterday, 7 November was a big one at the LHC, as the particle collider started smashing lead ions head-on instead of the proton – proton collisions that usually take place there.

Representation of a quark-gluon plasma

The result was a series of what is called mini big bangs: dense fireballs with temperatures of over 10 trillion Celsius degrees! At this kind of temperatures and energies, the nuclei of atoms start to melt in their constituend parts, quarks and gluons, and the result is called a quark-gluon plasma.

One of the primary goals of the Large Hadron Collider is to go back further and further in time, closer to the ‘birth’ of the Universe. The theory of quantum chromodynamics tells us that as we ‘travel’ in the past more and more, the strength of strong interactions drops fast and reaches zero; the process is called “asymptotic freedom”, and it brought David Politzer, Frank Wilczek and David Gross a Nobel Prize in 2004.

The quark-gluon plasma has been studied in great detail at the Relativistic Heavy Ion Collider (RHIC) at Upton, New York, which produced temperatures of 4 trillion degrees Celsius. These collisions will allow scientists to look at the world in a way they never could have before, showing how the Universe was about a millionth of a second after the big bang. One can only wonder what answers this plasma has to offer, and it already produced a huge surprise, acting like a perfect liquid instead of a gas, as expected. Still, one thing’s for sure: the Large Hadron Collider is producing more and more results each month, and whether it confirms current theories or proves them wrong, science will benefit greatly from this particle collider

share Share

This Tiny Nuclear Battery Could Last for Thousands of Years Without Charging

The radiocarbon battery is supposed to be safe for everyday operations.

Earth’s Longest Volcanic Ridge May Be an Underwater Moving Hotspot

Scientists uncover surprising evidence that the Kerguelen hotspot, responsible for the 5,000-kilometer-long Ninetyeast Ridge, exhibited significant motion.

Physicists just explained why the pop of a beer bottle sounds so perfect

A high-speed peek into what really happens when your beer bottle goes “pop.”

New NASA satellite mapped the oceans like never before

We know more about our Moon and Mars than the bottom of our oceans.

Physicists Think They've Found a Way to Harvest Energy from Earth's Rotation — And It Might Be Just Crazy Enough to Work

A wacky-looking hollow device is giving perpetual motion machine vibes.

Did WWI Dazzle Camouflage Actually Work? Scientists Revisit a 105-Year-Old Experiment to Find Out

Painting ships like zebras was a bold move, but it likely didn't fool U-boats. Something else worked though.

New Organic Semiconductor That Spirals Electrons Like a Corkscrew Could Lead to Brighter, More Energy-Efficient Screens

The technology could be applied to not just screens but also quantum computing and spintronics.

Black Holes Might Not Be Cosmic Dead-Ends But Rather the Beginning Of White Holes

From black holes to white holes. Who would've thought?

Cats Actually Have Hundreds of Facial Expressions and They Mirror Each Other to Form an Emotional Bond

Want to befriend a cat? Don't forget to blink or squint back if a cat does the same at you.

Physicist Claims Gravity Might Emerge From Entropy. Could This Unite Quantum Mechanics and Gravity?

A novel theory could finally bridge the gap between quantum physics and general relativity.