homehome Home chatchat Notifications


Large Hadron Collider creates mini big bangs and incredible heat

The Large Hadron Collider at CERN has taken another step towards its goal of finding the so called ‘god particle‘: it recently produced the highest temperatures ever obtained through a science experiment. The day before yesterday, 7 November was a big one at the LHC, as the particle collider started smashing lead ions head-on instead […]

Mihai Andrei
November 9, 2010 @ 3:10 pm

share Share

The Large Hadron Collider at CERN has taken another step towards its goal of finding the so called ‘god particle‘: it recently produced the highest temperatures ever obtained through a science experiment. The day before yesterday, 7 November was a big one at the LHC, as the particle collider started smashing lead ions head-on instead of the proton – proton collisions that usually take place there.

Representation of a quark-gluon plasma

The result was a series of what is called mini big bangs: dense fireballs with temperatures of over 10 trillion Celsius degrees! At this kind of temperatures and energies, the nuclei of atoms start to melt in their constituend parts, quarks and gluons, and the result is called a quark-gluon plasma.

One of the primary goals of the Large Hadron Collider is to go back further and further in time, closer to the ‘birth’ of the Universe. The theory of quantum chromodynamics tells us that as we ‘travel’ in the past more and more, the strength of strong interactions drops fast and reaches zero; the process is called “asymptotic freedom”, and it brought David Politzer, Frank Wilczek and David Gross a Nobel Prize in 2004.

The quark-gluon plasma has been studied in great detail at the Relativistic Heavy Ion Collider (RHIC) at Upton, New York, which produced temperatures of 4 trillion degrees Celsius. These collisions will allow scientists to look at the world in a way they never could have before, showing how the Universe was about a millionth of a second after the big bang. One can only wonder what answers this plasma has to offer, and it already produced a huge surprise, acting like a perfect liquid instead of a gas, as expected. Still, one thing’s for sure: the Large Hadron Collider is producing more and more results each month, and whether it confirms current theories or proves them wrong, science will benefit greatly from this particle collider

share Share

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

Mars Dust Storms Can Engulf Entire Planet, Shutting Down Rovers and Endangering Astronauts — Now We Know Why

Warm days may ignite the Red Planet’s huge dust storms.

Scientists Built a Radioactive Diamond Battery That Could Last Longer Than Human Civilization

A tiny diamond battery could power devices for thousands of years.

The Universe’s Expansion Rate Is Breaking Physics and JWST’s New Data Makes It Worse

New data confirms a puzzling rift in the universe's expansion rate.

The explosive secret behind the squirting cucumber is finally out

Scientists finally decode the secret mechanism that has been driving the peculiar seed dispersion action of squirting cucumber.

Mysterious eerie blue lights erupt during avalanche — and no one is sure why

Could this be triboluminescence at scale?

In 1911, Einstein wrote a letter to Marie Curie, telling her to ignore the haters

The gist of it is simple: "ignore the trolls".

Scientists Turn a Quantum Computer Into a Time Crystal That Never Stops

Quantum computing meets the timeless oscillation of time crystals in a breakthrough experiment.

China Buids the World’s Most Powerful Hypergravity Facility. It Can Simulate Gravity 1,900 Times Stronger Than Earth's

Chinese scientists now have access to the world's most powerful hypergravity facility.

Scientists Reveal What a Single Photon Really Looks Like for the First Time

The shape of a photon Is finally revealed by physicists.