homehome Home chatchat Notifications


Transparent solar cells could be used onto entire buildings, screens, and more

This has the potential to be the holy graal of solar energy – UCLA researchers have developed a new organic polymer that produces electricity, is nearly transparent and much more resistant than silicone. If you think about solar cells, usually, the blacker the better – the blacker they are, the less energy is lost. But […]

Mihai Andrei
November 12, 2012 @ 7:01 am

share Share

This has the potential to be the holy graal of solar energy – UCLA researchers have developed a new organic polymer that produces electricity, is nearly transparent and much more resistant than silicone.

If you think about solar cells, usually, the blacker the better – the blacker they are, the less energy is lost. But what if we could make solar panels transparent? The applications are mind boggling. Imagine buildings wrapped in solar cells, laptops, phones, and why not cars? All of these could be powered by this technology. But while the idea might not be new, the results show great promise. The breakthrough came with isolating one band of light in the spectrum.

“(A solar film) harvests light and turns it into electricity. In our case, we harvest only the infrared part,” says Professor Yang Yang at UCLA’s California Nanosystems Institute, who has headed up the research on the new photovoltaic polymer. Absorbing only the infrared light, he explains, means the material doesn’t have to be dark or black or blue, like most silicon photovoltaic panels. It can be clear. “We have developed a material that absorbs infrared and is all transparent to the visible light.” “And then we also invented a new electrode, a metal, that is also transparent. So we created a new solar cell,” Yang adds.

Polymer solar cells (PSCs) have drawn intense attention due to their advantages over competing solar cell technologies, growing in efficiency and decreasing in price. Thin-film PV currently exists that can be applied to windows, but only on windows that can be tinted – something entirely different from transparent cells.

Strictly speaking though, the cells aren’t transparent – they’re just so small you can’t see them; the new polymer incorporates silver nanowires about 0.1 microns thick (a micron is 1000 times smaller than a millimeter). The main problem here is efficiency. Isolating only the infrared specter converts 6 percent of the sun’s energy into electricity – as opposed to 11-12 percent, which is common in commercial photovoltaics. But, that can change, researchers explain.

“We have to work hard in the lab to expand the coverage of the infrared,” says Yang. “Because infrared is huge, huge energy there, and we only harvest right now less than one-third of the infrared. Our efficiency could double or almost triple in the future. There are some limitations, but we should be able to go to 10 percent in the next 3 to 5 years.”

Yang also has a different, more sentimental motivation: the company that has launched the most high-profile effort to mass-manufacture photovoltaic polymers, Konarka Technologies, involved Yang’s PhD adviser, the late Sukant Tripathy. Yang hopes to fulfill his dream to bring cheap energy to places like India and China.

“I think that solar has to take a different attitude,” says Yang. “Whenever people think about solar, they think about the big silicon panels that they put on their roof, or the big solar farms that SoCal Edison builds out in the desert. But for the future of energy use, we must think about how to harvest energy whenever and wherever it is possible. If we can change the concept that energy has to come from one source, which is the power company, that the supply should not be subject to the limitations of the power grid, a lot of new things can happen.”

Research paper here.

share Share

Superhot Rock Energy Could Provide Enough Power to Fuel the U.S. Thousands of Times Over

Could next-generation geothermal energy finally fulfill its promise of ridding us of fossil fuels for good?

Futuristic Contact Lens Delivers Medication Directly to Your Eye

The next time you take some medicine, it could be through your lens.

Researchers present the first fully AI-designed wind turbine — it's 7x more efficient in cities

AI is transforming urban wind energy. Researchers in Birmingham, UK, have developed a revolutionary turbine optimized for low wind speeds and urban turbulence.

Researchers build ChatGPT-powered robot arm that costs $120

ChatGPT is leaking into the physical world.

This smart sensor can detect health symptoms without cloud computing

Sensor patches could transform healthcare and health monitoring.

AI's thirst for energy is reopening an infamous nuclear plant in the US

We all know AI is using up a lot of power. But we didn't have "reopening nuclear plants" on our bingo card.

Norway opens the world's first commercial carbon storage facility

This could be key technology in our climate struggles, but critics say it's greenwashing.

Electric Car Battery Charges in Under Five Minutes: Goodbye Range Anxiety?

Nyobolt's new battery promises rapid charging, but infrastructure remains the key challenge.

This Surprising Trick Could Make Your Lithium-Ion Batteries Last 50% Longer

Charging batteries at high currents may be the key to extending their lifespan.

Why Solar Panels Could Be Next Big Target for Hackers

As solar energy becomes more widespread, cybercriminals are finding new ways to breach these interconnected systems, posing serious risks to power grids and energy security.