homehome Home chatchat Notifications


This air-purifying lampshade could reduce pollutants in your house or office

This type of lamp could be quite useful.

Mihai Andrei
August 21, 2023 @ 9:40 am

share Share

Researchers working in South Korea have devised a lampshade coated with a special catalyst. The catalyst uses heat from an incandescent bulb to effectively destroy indoor air pollution. The lampshades target volatile organic compounds (VOCs), which account for most indoor airborne pollutants, and could be cost-effective to use.

lamp special
A lampshade coated with a catalyst uses heat from an incandescent bulb to destroy indoor air pollution. A catalyst, in a general sense, is a substance that increases the rate of a chemical reaction without itself being consumed in the reaction. Image credits: Minhyung Lee.

VOCs that exist indoors are typically at very small concentrations (almost under 1 ppm), Minhyung Lee, study author and researcher at Yonsei University told ZME Science. However, if you continuously inhale them, the concentration can grow inside the human body.

“Even a small amount of VOCs can cause many bad effects such as allergies, respiratory problems, and headaches,” Lee explains. “Our lampshade system was tested at a higher concentration of 10 ppm and successfully removed it completely.”

Lee works alongside Hyoung-il Kim, who was the principal investigator for the project. The group has been working to develop environmentally friendly air purification systems that utilize both photocatalysis and thermal catalysis. In other words, they want to use light and heat to trigger chemical reactions that are beneficial inside our homes.

That works very well with light bulbs. Halogen light bulbs convert only 10% of the power they use into light; the other 90% is converted into heat. Incandescent light bulbs are even worse. That heat is wasted — but it can be used to trigger reactions.

In this particular case, the researchers coated the inside of an aluminum lampshade with the catalyst and placed a 100-watt halogen light bulb in the lamp. When the light bulb heats up, it activates the catalysts and triggers a reaction that decomposes VOCs into harmless carbon dioxide and water — no extra energy required.

“The thermocatalyst is coated on the lampshade and starts to activate when turning on the traditional lamps. These traditional lamps provide the coated thermal catalyst with sufficient thermal energy to activate the catalyst. The coating method enables direct contact of thermocatalysts with VOC substances.”

“The advantage of this method is that no additional equipment for the catalyst is required, and commonly used lampshades can be applied,” Lee researcher adds.

Getting VOCs outside of our buildings

Studies have documented several health conditions associated with long-term VOC exposure. From cognitive impairment to throat and nose irritation, these compounds can cause unseen damage for a long time.

Some of the most prevalent VOCs include formaldehyde (which causes sick building syndrome), acetaldehyde (generated from furniture or paint), and BTEX, which is sometimes produced when cooking, especially with oil. These VOCs are harmful to human health and are precursor to fine dust, which can also cause health problems, says Lee.

Several ways to address VOCs exist. However, they typically contain adsorbents (such as activated carbon) to capture the pollutants. But in this scenario, the pollutants are just adsorbed, not actually removed. Some air purification systems have also recently started to incorporate a strong UV light source as a catalyst, but this is dangerous and expensive, Lee mentions.

“On the other hand, we focused on the waste heat energy naturally generated from the lamps. And design the sustainable air purification system that utilize this waste heat energy for the complete removal of various gaseous air pollutants,” the scientist told ZME Science.

“Establishing this system is remarkably simple and convenient. It only requires a coating of catalyst paste onto the existing lampshades in your home.”

Lee says this could be a cost-effective technology to control indoor air quality. For now, the team is working on making a cheaper catalyst, which especially means eliminating the platinum (that’s expensive). They’re also developing catalysts that work with light from more efficient LEDs, that don’t give away as much heat. “Our ultimate goal is to develop a hybrid catalyst that can utilize the full spectrum produced by light sources, including UV and visible light, as well as waste heat,” Kim says.

This research was presented at a meeting of the American Chemical Society and did not yet undergo peer review.

share Share

Your gut has a secret weapon against 'forever chemicals': microbes

Our bodies have some surprising allies sometimes.

High IQ People Are Strikingly Better at Forecasting the Future

New study shows intelligence shapes our ability to forecast life events accurately.

Cheese Before Bed Might Actually Be Giving You Nightmares

Eating dairy or sweets late at night may fuel disturbing dreams, new study finds.

Scientists Ranked the Most Hydrating Drinks and Water Didn't Win

Milk is more hydrating than water. Here's why.

Methane Leaks from Fossil Fuels Hit Record Highs. And We're Still Looking the Other Way

Powerful leaks, patchy action, and untapped fixes keep methane near record highs in 2024.

Astronomers Found a Star That Exploded Twice Before Dying

A rare double explosion in space may rewrite supernova science.

This Enzyme-Infused Concrete Could Turn Buildings into CO2 Sponges

A new study offers a greener path for concrete, the world’s dirtiest building material.

AI Helped Decode a 3,000-Year-Old Babylonian Hymn That Describes a City More Welcoming Than You’d Expect

Rediscovered text reveals daily life and ideals of ancient Babylon.

Peeling Tape Creates Microlightning Strong Enough To Power Chemistry

Microlightning from everyday tape may unlock cleaner ways to drive chemical reactions.

Menstrual Cups Passed a Brutal Space Test. They Could Finally Fix a Major Problem for Many Astronauts

Reusable menstrual cups pass first test in space-like flight conditions.