homehome Home chatchat Notifications


Inexpensive nano-camera takes 3D pictures

Researchers have developed a camera that can capture translucent objects in 3D The camera is very cheap, at only $500 The camera could be used in medical imaging and collision-avoidance detectors, among others A $500 “nano-camera” that can operate at the speed of light and take 3D pictures has been developed by researchers in the […]

Mihai Andrei
November 26, 2013 @ 3:06 pm

share Share

  • Researchers have developed a camera that can capture translucent objects in 3D
  • The camera is very cheap, at only $500
  • The camera could be used in medical imaging and collision-avoidance detectors, among others

A $500 “nano-camera” that can operate at the speed of light and take 3D pictures has been developed by researchers in the MIT Media Lab.

MIT students (left to right) Ayush Bhandari, Refael Whyte and Achuta Kadambi pose next to their "nano-camera" that can capture translucent objects, such as a glass vase, in 3-D.

MIT students (left to right) Ayush Bhandari, Refael Whyte and Achuta Kadambi pose next to their “nano-camera” that can capture translucent objects, such as a glass vase, in 3-D.

The camera, which was presented last week at Siggraph Asia in Hong Kong, could be very useful in medical imaging collision-avoidance detectors for cars, and in motion tracking and gesture recognition technology. The camera is based on “Time of Flight” technology, just like that used by Microsoft in the second-generation Kinect device. In it, the location of objects is calculated by how long it takes a light signal to reflect off a surface and return to the sensor. However, the camera is smart enough not to be tricked by rain or fog objects.

“Using the current state of the art, such as the new Kinect, you cannot capture translucent objects in 3-D,” Kadambi says. “That is because the light that bounces off the transparent object and the background smear into one pixel on the camera. Using our technique you can generate 3-D models of translucent or near-transparent objects.”

In a conventional Time of Flight camera, a light signal is fired at a scene, where it bounces off an object and returns to strike the pixel. Since you know the speed of light, it’s very easy to calculate the distance the light has traveled and therefore the depth of the object it has been reflected from. However, changing weather conditions or foggy environments all mix with the signal, causing noise and uncertainties.

Instead, the new device uses an encoding technique commonly used in the telecommunications industry to calculate the distance a signal has travelled.

“We use a new method that allows us to encode information in time,” Raskar says. “So when the data comes back, we can do calculations that are very common in the telecommunications world, to estimate different distances from the single signal.”

Basically, the new camera probes the scene with a continuous-wave signal that oscillates at nanosecond periods – which allows the team to use inexpensive technology (off-the-shelf light-emitting diodes – LEDs), which strobe at nanosecond periods.

“By solving the multipath problem, essentially just by changing the code, we are able to unmix the light paths and therefore visualize light moving across the scene,” Kadambi says. “So we are able to get similar results to the $500,000 camera, albeit of slightly lower quality, for just $500.”

What makes it even more interesting is that the team’s approach is very similar to that already being shipped in devices such as the new version of Kinect, Davis says.

“So it’s going to go from expensive to cheap thanks to video games, and that should shorten the time before people start wondering what it can be used for,” he says. “And by the time that happens, the MIT group will have a whole toolbox of methods available for people to use to realize those dreams.”

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.