homehome Home chatchat Notifications


'Heart-glove' fitted with stretchy electronics may replace pacemakers

Exploiting both the latest in 3D printing and stretchable electronics, scientists at University of Illinois at Urbana-Champaign and Washington University in St. Louis have devised a new electronic membrane that could replace pacemakers. The membrane is designed to ‘cloth’ the heart and constantly delver electrical shocks to maintain a constant heart beat rate, avoiding arrhythmia and minimizing […]

Tibi Puiu
March 4, 2014 @ 12:38 pm

share Share

Custom-fitted membrane expands and contracts with the heart, and could one day deliver electric shocks in response to a heart attack. (c) NATURE COMMUNICATONS

Custom-fitted membrane expands and contracts with the heart, and could one day deliver electric shocks in response to a heart attack. (c) NATURE COMMUNICATONS

Exploiting both the latest in 3D printing and stretchable electronics, scientists at University of Illinois at Urbana-Champaign and Washington University in St. Louis have devised a new electronic membrane that could replace pacemakers. The membrane is designed to ‘cloth’ the heart and constantly delver electrical shocks to maintain a constant heart beat rate, avoiding arrhythmia and minimizing heart attack risks.

Similar ideas have  been proposed since the early 1980s so genuinely, the concept isn’t entirely novel. However, these pioneering earlier models stood no chance at being practical, since the crude fabrics with bulky electronics sowed directly onto the membrane  interfered directly with the heart and did more harm than good.

This new design is like a spider-web network of sensors and electrodes, all built-on a flexible membrane using 3-D printing. Because everything is custom designed according to the patient’s needs, it all fits like a glove. The real stroke of genius, however, lies in the use of stretchable electronics. John Rogers, a materials scientists from the University of Illinois, was responsible for this aspect and while the electronic components (sensors, electrodes ) themselves are made out of conventional rigid materials (like silicon), the circuits are laid out in curved, s-shaped design that allows them to stretch and bend without breaking.

“When it senses such a catastrophic event as a heart attack or arrhythmia, it can also apply a high definition therapy,” said biomedical engineer Igor Efimov of Washington University, who helped design and test the device.

“It can apply stimuli, electrical stimuli, from different locations on the device in an optimal fashion to stop this arrhythmia and prevent sudden cardiac death,” Efimov said.

The researchers liken the heart glove to the  pericardium itself – the heart’s membrane – as the device senses and interacts with the heart in different ways that are relevant to clinical cardiology.  A prototype membrane was fitted to a rabbit’s heart, keeping the organ operating perfectly “outside of the body in a nutrient and oxygen-rich solution”.

High resolution 3D imaging was used to scan the rabbit's heart and create a mold. (c) NATURE COMMUNICATIONS

High resolution 3D imaging was used to scan the rabbit’s heart and create a mold. (c) NATURE COMMUNICATIONS

Impressive, by all means, but for the moment the device will remain a research tool. It’s still uncertain when this solution, either stand alone or integrated part of another system, would become available for heart treatments.

The research is published in the journal Nature Communications.

share Share

NASA Astronaut Snaps Rare Sprite Flash From Space and It’s Blowing Minds

A sudden burst of red light flickered above a thunderstorm, and for a brief moment, Earth’s upper atmosphere revealed one of its most elusive secrets. From 250 miles above the surface, aboard the International Space Station, astronaut Nichole “Vapor” Ayers looked out her window in the early hours of July 3 and saw it: a […]

Deadly Heatwave Killed 2,300 in Europe, and 1,500 of those were due to climate change

How hot is too hot to survive in a city?

You're not imagining it, Mondays really are bad for your health

We've turned a social construct into a health problem.

These fig trees absorb CO2 from the air and convert it into stone

This sounds like science fiction, but the real magic lies underground

Koalas Spend Just 10 Minutes a Day on the Ground and That’s When Most Die

Koalas spend 99% of their lives in trees but the other 1% is deadly.

Lost Pirate Treasure Worth Over $138M Uncovered Off Madagascar Coast

Gold, diamonds, and emeralds -- it was a stunning pirate haul.

These Wild Tomatoes Are Reversing Millions of Years of Evolution

Galápagos tomatoes resurrect ancient defenses, challenging assumptions about evolution's one-way path.

Earth Is Spinning Faster Than Usual. Scientists Aren’t Sure Why

Shorter days ahead as Earth's rotation speeds up unexpectedly.

The Sound of the Big Bang Might Be Telling Us Our Galaxy Lives in a Billion-Light-Year-Wide Cosmic Hole

Controversial model posits Earth and our galaxy may reside in a supervoid.

What did ancient Rome smell like? Fish, Raw Sewage, and Sometimes Perfume

Turns out, Ancient Rome was pretty rancid.