homehome Home chatchat Notifications


Fourier transformation optimized algorithm turns fast into superfast

The Fourier transformation is arguably the most important algorithm in information technology, with immense applications as well  in optics, signal and image processing, pattern recognition etc. Thanks to this remarkable mathematical operation, we’re able to see videos or listen to music on an iPod, as it turns the digital information into readable frequencies. Recently, MIT […]

Tibi Puiu
January 20, 2012 @ 8:48 pm

share Share

fourier transformation The Fourier transformation is arguably the most important algorithm in information technology, with immense applications as well  in optics, signal and image processing, pattern recognition etc. Thanks to this remarkable mathematical operation, we’re able to see videos or listen to music on an iPod, as it turns the digital information into readable frequencies. Recently, MIT scientists have managed to come up with an optimized algorithm of the Fast Fourier Transformation, which was already fast enough as one can imagine. The researchers’ results in some instances had a tenfold increase in processing speed.

In simple terms the Fourier transformation turns signals into frequencies. A simple example as far as applications go is how it can turn voltage signals transmitted through a wire to an mp3 player into sounds rendered through a speaker fast and easy. However, it’s been found indispensable in applications ranging from economics, engineering,  sociology and so on.

In the 1960s the Fast Fourier Transformation algorithm was developed, which provided an absolute breakthrough, still the question remained to this day whether it could be optimized even further. The MIT mathematicians devised the new faster than Fast Fourier Transformation by granting importance to frequencies that “weigh” more and overlooking weak signals.

The algorithm takes a digital signal containing a certain number of samples and expresses it as the weighted sum of an equivalent number of frequencies. Some of these frequencies are more important or “heavy” to the signal, and are thus prioritized. The algorithm slices the signal into narrow bandwidths, each slice containing just one heavy frequency. Each slice is then sliced again and so on once even further until low-weighted frequencies and highly-weighted signals are completely isolated from one another.

In “spare” signals, whose Fourier transforms include a relatively small number of heavily weighted frequencies, the new algorithm can output at lightning speed compared to the old one, as low weight signals are cut out completely with absolutely no loss in quality. “In nature, most of the normal signals are sparse,” says Dina Katabi, one of the developers of the new algorithm.

Considering most of the signals in nature are sparse, and the fact that the FFT was already lightning fast, this new improvement from MIT might have extraordinary consequences. Using your smartphone to wirelessly transmit large video files without draining the battery is just one application, out of countless that might benefit from it.

Read more about the research in technical detail at the MIT press release.

 

share Share

If you use ChatGPT a lot, this study has some concerning findings for you

So, umm, AI is not your friend — literally.

Miyazaki Hates Your Ghibli-fied Photos and They're Probably a Copyright Breach Too

“I strongly feel that this is an insult to life itself,” he said.

Bad microphone? The people on your call probably think less of you

As it turns out, a bad microphone may be standing between you and your next job.

Mathematician Who Bridged Algebra and the Quantum World Wins 2025 Abel Prize

This year, the Abel Prize — the field’s highest honor — has been awarded to Masaki Kashiwara, prolific Japanese mathematician whose work has quietly reshaped how we understand some of the most complex equations in existence. The Norwegian Academy of Science and Letters announced the award “for his fundamental contributions to algebraic analysis and representation […]

Earth’s Longest Volcanic Ridge May Be an Underwater Moving Hotspot

Scientists uncover surprising evidence that the Kerguelen hotspot, responsible for the 5,000-kilometer-long Ninetyeast Ridge, exhibited significant motion.

New NASA satellite mapped the oceans like never before

We know more about our Moon and Mars than the bottom of our oceans.

This AI Tool Can Scan Your Food and Tell You Exactly How Many Calories and Other Nutrients It Has

Knowing what's inside your food has never been so easy.

The Roundest (and Most Rectangular) Countries, According to Math

Apparently, Sierra Leone is both very round and quite rectangular.

Cats Actually Have Hundreds of Facial Expressions and They Mirror Each Other to Form an Emotional Bond

Want to befriend a cat? Don't forget to blink or squint back if a cat does the same at you.

Astronauts Can Now Print Metal in Space and It’s a Game Changer for Future Missions

ESA’s metal 3D printer aboard the ISS could revolutionize space exploration by enabling self-sufficient missions.