homehome Home chatchat Notifications


Folding into the future: Modern origami method creates stunning glass shapes

The technique could also be used in other materials.

Fermin Koop
March 30, 2023 @ 12:11 pm

share Share

A team of chemical engineers in China has extended the centuries-old practice of origami to produce sophisticated shapes made out of glass or other hard materials. Their modern method, which can be combined with 3D printing, could have a wide array of applications, the researchers said, from sculpture to catalysis and beyond.

Glass designs (left) can be made with origami and cutting techniques, which can be combined with 3D printing to make more complex shapes, such as a 3D lattice (right). Image credits: Yang Xu.

Origami comes from the Japanese words ori (“folding”) and kami (“paper”). It consists of folding a sheet of square paper into a sculpture without taping, gluing or cutting it. While mostly considered a Japanese art, the history of origami actually goes around the world, with roots in China, where paper was invented, and in European countries.

In previous work, the engineers in China used origami and the related technique of kirigami, which combines cutting with folding, to shape soft materials of polymers. In this newer study, they wanted to extend these techniques to glass and ceramics, “which are much harder to process into complex shapes,” Tao Xie, the lead researcher, said in a press release.

A twist to origami

The conventional approaches to shaping glass and ceramics involve using molds or 3D printing technology to achieve the intended final form. However, a mold can’t produce a complicated shape, and while 3D printers can, they take a long time to make the object – which tends to be flimsy and need additional support during its creation.

Seeking alternatives, the researchers created a technique that mixes nanoparticles of silica, the main ingredient for making glass, into a liquid with several compounds. Curing the mixture with UV light produced a polymer with beads of silica suspended in it. They then cut, folded, twisted and pulled on sheets of this polymer composite.

If they did this at room temperature, the composite kept its shape very well. This is because the folding and stretching process disrupts the interface of the silica particles and the polymer matrix. But if it’s critical to fully retain the shape in the next steps, the researchers found that the composite has to be heated when folded and stretched.

They first heated the composite to 130 °C and then to 600 °C, which removed the polymer from the object and turns it opaque. After cooling, a third heating step melts the silica particles together at 1200 °C to convert the object into a clear glass with a smooth, non-layered texture. Achieving that full transparency was the biggest challenge, they said.

The researchers are also extending their method beyond glass to ceramics, replacing the silica with substances such as zirconium dioxide and titanium dioxide. While glass is brittle and inert, these compounds open up the possibility of producing “functional” objects, such as materials that are less fragile than glass or have catalytic properties.

“When you fold a piece of paper, the level of complexity is somewhat limited, and 3D printing is kind of slow,” Xie said in a media statement. “So we wanted to see if we could combine these two techniques to take advantage of their attractive attributes. That would give us the freedom to make almost any shaped part.”

Next, the researchers would like to automate their process for large-scale manufacturing. They believe that the overall artistic community can learn more about their work and use it in catalyst and sculpture design, as well as for other purposes. Their research was presented at a meeting of the American Chemical Society (ACS).

share Share

Earth Might Run Out of Room for Satellites by 2100 Because of Greenhouse Gases

Satellite highways may break down due to greenhouse gases in the uppermost layers of the atmosphere.

Future Windows Could Be Made of Wood, Rice, and Egg Whites

Simple materials could turn wood into a greener glass alternative.

Scientists Just Made Cement 17x Tougher — By Looking at Seashells

Cement is a carbon monster — but scientists are taking a cue from seashells to make it tougher, safer, and greener.

Scientists Found a 380-Million-Year-Old Trick in Velvet Worm Slime That Could Lead To Recyclable Bioplastic

Velvet worm slime could offer a solution to our plastic waste problem.

Earth’s Longest Volcanic Ridge May Be an Underwater Moving Hotspot

Scientists uncover surprising evidence that the Kerguelen hotspot, responsible for the 5,000-kilometer-long Ninetyeast Ridge, exhibited significant motion.

New NASA satellite mapped the oceans like never before

We know more about our Moon and Mars than the bottom of our oceans.

To Spin Silk Five Times Stronger Than Steel, Spiders Perform a Stretching Trick

Stretching is key to spider silk's remarkable properties.

Cats Actually Have Hundreds of Facial Expressions and They Mirror Each Other to Form an Emotional Bond

Want to befriend a cat? Don't forget to blink or squint back if a cat does the same at you.

Could time travel actually be possible? One researcher thinks so

No word yet if 88 miles per hour is the magic number.

This Radar System Can Detect Hidden Moisture in Your Walls

Mold is one of the most significant challenges for homeowners, and once it takes hold, it can be incredibly difficult to eliminate. Preventing mold is the best approach, and the cornerstone of mold prevention is managing humidity. Now, researchers from Oak Ridge National Laboratory (ORNL) have developed a method using microwave radar to monitor the […]