ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Health → Mind & Brain

New drug literally blows up the most aggresive brain cancer cells

Tibi PuiubyTibi Puiu
March 24, 2014
in Health, Mind & Brain, News, Research
A A
Share on FacebookShare on TwitterSubmit to Reddit
A new drug causes brain cancer cells in mice to explode. (c) Cell uses brain cancer cells in mice to explode. (c) Cell
A new drug causes brain cancer cells in mice to explode. (c) Cell

A potentially game changing drug developed by scientists at Karolinska Institutet and Uppsala University infiltrates the cells from glioblastoma, the most aggressive type of brain tumor, and causes them to literally explode. Trials so far have been made only on mice whose tumor growth was reversed and survival was prolonged considerably.

Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor. These tumors are often aggressive, infiltrate surrounding brain tissue and are particularly dangerous since these are usually highly malignant (cancerous) because the cells reproduce quickly and they are supported by a large network of blood vessels. GBMs arise from glial cells, which are cells that form the tissue that surrounds and protects other nerve cells found within the brain and spinal cord.

Headache, nausea, vomiting, and drowsiness are the usual symptoms and as you can imagine treating cancer in the brain is no piece of cake. Typically, treatments involve surgery, radiation, and chemotherapy, which are extremely painful and invasive. Even so,  only 5 percent of patients with GBM survive longer than three years, and the average life expectancy of a patient is 15 months.

Blowing up cancer

Nobel laureate James E. Rothman discovered that a protein complex (pictured in orange) enables vesicles to fuse with their target membranes. Proteins on the vesicle bind to specific complementary proteins on the target membrane, ensuring that the vesicle fuses at the right location and that cargo molecules are delivered to the correct destination. (Credit: Mattias Karlén/The Nobel Committee for Physiology or Medicine)
Nobel laureate James E. Rothman discovered that a protein complex (pictured in orange) enables vesicles to fuse with their target membranes. Proteins on the vesicle bind to specific complementary proteins on the target membrane, ensuring that the vesicle fuses at the right location and that cargo molecules are delivered to the correct destination. (Credit: Mattias Karlén/The Nobel Committee for Physiology or Medicine)

After screening over 1,000 different types of molecules, the team of researchers found that a particular substance called Vacquinol-1 killed glioblastoma cancer cells, and it did it in a phenomenal manner too. Apparently, Vacquinol-1 gave the cancer cells uncontrolled vacuolization, a process in which the cell carries substances from outside the cell into its interior. Without being able to actively control what can get in and what get out of the cell, bag-like vessels filled with water and other materials, called vacuoles, begin to accumulate. When cancer cells were filled with a large amount of vacuoles, the outer wall of the cell collapsed and the cell simply exploded and died.

It’s worth mentioning that the 2013 Nobel Prize in physiology or medicine was awarded for the discovery of how cellular vesicles transport molecules inside cells. Vacuoles are a type of vesicles.

To test the substance, the researchers transplanted human glioblastoma cells into mice and fed them Vacquinol-1 for five days. The mice which were part of the control group and hence weren’t given any Vacquinol-1 died  after only 30 days. Out of those that received the drug, which can also be administered under tablet form,  six of eight mice were still alive after 80 days — about 50 days longer than the mice who weren’t given the drug.

“This is an entirely new mechanism for cancer treatment, said Patrik Ernfors, professor of tissue biology at the Department of Medical Biochemistry and Biophysics at Karolinska Institutet. A possible medicine based on this principle would therefore attack the glioblastoma in an entirely new way. This principle may also work for other cancer diseases; we have not really explored this yet.”

“We now want to try to take this research discovery through preclinical development and all the way to the clinic. The goal is to get into a phase 1 trial,” he said.

Indeed the results are startling and while far from being a cure, the data suggests that life can be significantly prolonged if the drug works similarly on humans too. However, large concentrations of the cancer exploding substance were given to the mice, which has prompted some scientists to show their reservation. How humans will fair with such a treatment and what will the side effects be are interesting questions that need to be answered.

RelatedPosts

Why do people self-harm? New study offers surprising answers
Scans reveal what happens in your brain during an out-of-body experience
Scientists figure out how many mutations it takes for healthy cells to turn cancerous
The brain rewards new information like it does food, money, or drugs

Findings were reported in the journal Cell.

[story via Kurzweil]

Tags: braincancerGlioblastoma

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Mathematics

This study suggests zapping people’s brains could make them better at math

byMihai Andrei
3 days ago
Mind & Brain

The Brain May Make New Neurons in Adulthood and Even Old Age

byTibi Puiu
6 days ago
Home science

What side do cats prefer to sleep on? The left side, and there’s a good reason for that

byMihai Andrei
2 weeks ago
Close-up photo of a tiny wasp.
Animals

Wasp Mums Keep Remarkable Mental To-Do List For Multiple Nests Despite Tiny Brain

byRupendra Brahambhatt
2 weeks ago

Recent news

Forget the honeybee. These unusual pollinators show just how crazy plant sex can really be

July 10, 2025
solar panels

For the first time in history, solar was Europe’s top source of electricity

July 10, 2025

Scientists Found a Way to Turn Falling Rainwater Into Renewable Energy

July 10, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.