homehome Home chatchat Notifications


A “textbook changing” new form of photosynthesis has been discovered

A major discovery!

Elena Motivans
June 15, 2018 @ 10:14 am

share Share

For those of you who think that we know it all already, there’s a new surprise. A recent discovery has shaken what know about photosynthesis, an already well-studied topic. The “textbook changer” is that a group of photosynthesizers exists that does not need visible red light. This was thought to be impossible because light below these wavelengths does not contain much energy.

It is very well established that photosynthetic organisms use visible red light for photosynthesis. The green pigment, chlorophyll-a, is used to collect red light and use its energy to make necessary biochemicals and oxygen. Chlorophyll-a is found in pretty much every single photosynthetic organism, so we thought that it sets an energy limit for photosynthesis. This has been termed the “red limit” and was thought to signify the minimum amount of energy required for the process of photosynthesis.

One cyanobacterium, Acaryochloris, that lives in the shade of a green sea squirt that blocks most visible light is known to use near-infrared light. It was considered an exception as it is a single species and lives in an extremely specific habitat. Now, the researchers have discovered that it isn’t just a one-off, but actually a quite common lifestyle for cyanobacteria that live in shaded areas. A few examples are found in bacterial mats in Yellowstone Park and in Australian beach rock.

Colony of cyanobacteria where magenta represents chlorophyll-a driven photosynthesis and yellow represents chlorophyll-f driven photosynthesis. Credit: Dennis Nuernberg.

So how are these cyanobacteria able to survive if they can’t power their chlorophyll-a? It turns out that chlorophyll-a shuts down under these circumstances and lets its sidekick chlorophyll-f take over. Previously, chlorophyll-f was thought to just harvest light, now we know that it takes a starring role under shaded conditions and can use infrared red light to perform photosynthesis below the red limit. Plants that use this photosynthesis type can also protect themselves from varying brightness of light.

“The new form of photosynthesis made us rethink what we thought was possible. It also changes how we understand the key events at the heart of standard photosynthesis. This is textbook changing stuff,” said lead researcher Professor Bill Rutherford, from the Department of Life Sciences at Imperial College London.

Now we know of a third widespread type of photosynthesis. It is only employed in special conditions, in infrared-rich shaded conditions. When there is normal light, standard photosynthesis is still the norm.

So what are the consequences of this discovery? The researchers think that it could help to engineer more efficient crops that can use a wider range of light. Another interesting implication is that is could lower our standard, so to speak, to search for life on other planets. Until now, the red limit is used in astrobiology to determine whether complex life could have evolved in other solar systems.

It’s pretty cool that there are major discoveries to be made on topics that we think that we know well!

Journal reference: Dennis J. Nürnberg et al, Photochemistry beyond the red limit in chlorophyll f–containing photosystems, Science (2018). DOI: 10.1126/science.aar8313

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.