homehome Home chatchat Notifications


Scientists devise computer using swarms of soldier crabs

Computing using unconventional methods found in nature has become an important branch of computer science, which might aid scientists construct more robust and reliable devices. For instance, the ability of biological systems to assemble and grow on their own enables much higher interconnection densities or swarm intelligence algorithms, like ant colonies that find optimal paths to food sources. […]

Tibi Puiu
April 18, 2012 @ 11:10 am

share Share

Computing using unconventional methods found in nature has become an important branch of computer science, which might aid scientists construct more robust and reliable devices. For instance, the ability of biological systems to assemble and grow on their own enables much higher interconnection densities or swarm intelligence algorithms, like ant colonies that find optimal paths to food sources. But its one thing to get inspired by nature to build computing devices, and another to use nature itself as the main computing component.

A series of snapshots in OR gate of swarm balls (credit: Yukio-Pegio Gunji, Yuta Nishiyama, Andrew Adamatzky)

A series of snapshots in OR gate of swarm balls (credit: Yukio-Pegio Gunji, Yuta Nishiyama, Andrew Adamatzky)

Previously, scientific groups have used all sorts of natural computation mechanisms like fluids or even DNA and bacteria. Now, a team of  computer scientists, lead by Yukio-Pegio Gunji from Kobe University in Japan, have successfully created a computer that exploits the swarming behaviour of soldier crabs. Yup, that’s nothing you hear every day.

For their eccentric choice of computing agent, the researchers’ inspired themselves from the billiard ball computer model, a classic reversible mechanical computer, mainly used for didactic purposes first proposed in 1982 by Edward Fredkin and Tommaso Toffoli.

The billiard ball computer model can be used as a Boolean circuit, only instead of wires it uses the paths on which the balls travel, the information is encoded by the presence or absence of a ball on the path (1 and 0), and its logic gates (AND/OR/NOT) are simulated by collisions of balls at points where their paths cross. Now, instead of billiard balls think crabs!

“These creatures seem to be uniquely suited for this form of information processing . They live under the sand in tidal lagoons and emerge at low tide in swarms of hundreds of thousands.

What’s interesting about the crabs is that they appear to demonstrate two distinct forms of behaviour. When in the middle of a swarm, they simply follow whoever is nearby. But when they find themselves on on the edge of a swarm, they change.

Suddenly, they become aggressive leaders and charge off into the watery distance with their swarm in tow, until by some accident of turbulence they find themselves inside the swarm again.

This turns out to be hugely robust behaviour that can be easily controlled. When placed next to a wall, a leader will always follow the wall in a direction that can be controlled by shadowing the swarm from above to mimic to the presence of the predatory birds that eat the crabs. ” MIT tech report

Thus, the researchers were able to construct a computer which uses solider crabs for transmitting information. They were able to build a decent OR gate using the crabs, their AND-gates were a lot less reliable however. A more crab-friendly environment would’ve rendered better results, the researchers believe.

The findings were published in the journal Emerging Technologies.

share Share

These Cockatoos Prepare Their Food by Dunking it Into Water

Just like some of us enjoy rusk dipped in coffee or tea, intelligent cockatoos delight in eating rusk dipped in water.

AI thought X-rays are connected to eating refried beans or drinking beer

Instead of finding true medical insights, these algorithms sometimes rely on irrelevant factors — leading to misleading results.

AI is scheming to stay online — and then lying to humans

An alarming third party report almost looks like a prequel to Terminator.

The David Mayer case: ChatGPT refuses to say some names. We have an idea why

Who are David Mayer and Brian Hood?

The explosive secret behind the squirting cucumber is finally out

Scientists finally decode the secret mechanism that has been driving the peculiar seed dispersion action of squirting cucumber.

How CCTV Cameras and AI Can Prevent Floods in Cities

Researchers have developed an AI system using CCTV cameras to monitor culverts, potentially reducing urban flooding by detecting blockages in real-time.

Cars Are Unwittingly Killing Millions of Bees Every Day, Scientists Reveal

Apart from pollution, pesticides, and deforestation, cars are also now found to be killing bees in large numbers.

Could CAR-T Therapy Be the End of Lifelong Lupus Medication? Early Results Say 'Yes'

T-cells are real life saviors. If modified properly, they can save lupus patients from the trouble of taking medicines regularly.

Elon Musk’s social media posts have had a ‘sudden boost’ since July, new research reveals

Is the former Twitter platform now just used as a megaphone?

The world's first wooden satellite was launched into space

The satellite is made from magnolia wood, which was historically used for samurai sheaths.