homehome Home chatchat Notifications


Carbon nanotube fiber can carry four times more charge than copper

Reliable, well supplied and with years and years of manufacturing experience behind it, copper is the most widespread material used for delivering electrical charge. Some applications warrant more efficient materials, though,  and researchers at Rice recently showed that carbon nanotubes spun into fiber can carry four times as much electrical charge than copper cables of […]

Tibi Puiu
February 24, 2014 @ 1:13 pm

share Share

Reliable, well supplied and with years and years of manufacturing experience behind it, copper is the most widespread material used for delivering electrical charge. Some applications warrant more efficient materials, though,  and researchers at Rice recently showed that carbon nanotubes spun into fiber can carry four times as much electrical charge than copper cables of the same mass.

Of course, carbon nanotubes taken individually can deliver 1,000 times more current than copper, but real-world applications require macroscopic conductors. Previous attempts at mustering carbon nanotubes for high power electrical charge failed, however Rice University researchers demonstrated that wet-spun carbon nanotube fiber is a good alternative.

Rice professors Junichiro Kono and Matteo Pasquali developed a strong and flexible cable even though at 20 microns wide, it’s thinner than a human hair. For benchmark purposes, the researchers analyzed the “current carrying capacity” (CCC), or ampacity, of the nanotube fiber against that of copper cables. Four mediums were chosen for this analysis: open air, in a vacuum and in nitrogen or argon environments.

Scanning electron microscope images show typical carbon nanotube fibers created at Rice University and broken into two by high-current-induced Joule heating. Rice researchers broke the fibers in different conditions — air, argon, nitrogen and a vacuum — to see how well they handled high current. The fibers proved overall to be better at carrying electrical current than copper cables of the same mass. (Credit: Kono Lab/Rice University)

Scanning electron microscope images show typical carbon nanotube fibers created at Rice University and broken into two by high-current-induced Joule heating. Rice researchers broke the fibers in different conditions — air, argon, nitrogen and a vacuum — to see how well they handled high current. The fibers proved overall to be better at carrying electrical current than copper cables of the same mass. (Credit: Kono Lab/Rice University)

The number one cause of electrical cable failure is overheating. When current passes through a conductor, it also produces heat because of the material’s resistivity. When temperatures exceed rated values, the cable gets too hot, breaks and, of course, can potentially become a fire hazard. Concerning the carbon nanotube fibers, those working in nitrogen atmosphere proved to have the best CCC, followed   by argon and open air, all of which were able to cool through convection. The same nanotube fibers in a vacuum could only cool by radiation and had the lowest CCC.

“The outcome is that these fibers have the highest CCC ever reported for any carbon-based fibers,” Kono said. “Copper still has better resistivity by an order of magnitude, but we have the advantage that carbon fiber is light. So if you divide the CCC by the mass, we win.”

Ever carried a copper or aluminium cable? That’s some heavy gear, but not because of the conducting material itself, but rather because both copper and aluminium don’t have a high tensile strength, a heavy steel-core reinforcement is needed to support the cable. In applications where weight is an important factor to consider, like aerial or spacial projects, carbon nanotube fiber could prove to be a better option, according to the Rice scientists.

Pasquali even suggested the thread-like fibers are light enough to deliver power to aerial vehicles. We’ve heard of wackier stuff work.

 “Suppose you want to power an unmanned aerial vehicle from the ground,” he mused. “You could make it like a kite, with power supplied by our fibers. I wish Ben Franklin were here to see that!”

Details were published in the journal Nanoscale. [story via Kurzeweil]

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.