homehome Home chatchat Notifications


Carbon nanotube fiber can carry four times more charge than copper

Reliable, well supplied and with years and years of manufacturing experience behind it, copper is the most widespread material used for delivering electrical charge. Some applications warrant more efficient materials, though,  and researchers at Rice recently showed that carbon nanotubes spun into fiber can carry four times as much electrical charge than copper cables of […]

Tibi Puiu
February 24, 2014 @ 1:13 pm

share Share

Reliable, well supplied and with years and years of manufacturing experience behind it, copper is the most widespread material used for delivering electrical charge. Some applications warrant more efficient materials, though,  and researchers at Rice recently showed that carbon nanotubes spun into fiber can carry four times as much electrical charge than copper cables of the same mass.

Of course, carbon nanotubes taken individually can deliver 1,000 times more current than copper, but real-world applications require macroscopic conductors. Previous attempts at mustering carbon nanotubes for high power electrical charge failed, however Rice University researchers demonstrated that wet-spun carbon nanotube fiber is a good alternative.

Rice professors Junichiro Kono and Matteo Pasquali developed a strong and flexible cable even though at 20 microns wide, it’s thinner than a human hair. For benchmark purposes, the researchers analyzed the “current carrying capacity” (CCC), or ampacity, of the nanotube fiber against that of copper cables. Four mediums were chosen for this analysis: open air, in a vacuum and in nitrogen or argon environments.

Scanning electron microscope images show typical carbon nanotube fibers created at Rice University and broken into two by high-current-induced Joule heating. Rice researchers broke the fibers in different conditions — air, argon, nitrogen and a vacuum — to see how well they handled high current. The fibers proved overall to be better at carrying electrical current than copper cables of the same mass. (Credit: Kono Lab/Rice University)

Scanning electron microscope images show typical carbon nanotube fibers created at Rice University and broken into two by high-current-induced Joule heating. Rice researchers broke the fibers in different conditions — air, argon, nitrogen and a vacuum — to see how well they handled high current. The fibers proved overall to be better at carrying electrical current than copper cables of the same mass. (Credit: Kono Lab/Rice University)

The number one cause of electrical cable failure is overheating. When current passes through a conductor, it also produces heat because of the material’s resistivity. When temperatures exceed rated values, the cable gets too hot, breaks and, of course, can potentially become a fire hazard. Concerning the carbon nanotube fibers, those working in nitrogen atmosphere proved to have the best CCC, followed   by argon and open air, all of which were able to cool through convection. The same nanotube fibers in a vacuum could only cool by radiation and had the lowest CCC.

“The outcome is that these fibers have the highest CCC ever reported for any carbon-based fibers,” Kono said. “Copper still has better resistivity by an order of magnitude, but we have the advantage that carbon fiber is light. So if you divide the CCC by the mass, we win.”

Ever carried a copper or aluminium cable? That’s some heavy gear, but not because of the conducting material itself, but rather because both copper and aluminium don’t have a high tensile strength, a heavy steel-core reinforcement is needed to support the cable. In applications where weight is an important factor to consider, like aerial or spacial projects, carbon nanotube fiber could prove to be a better option, according to the Rice scientists.

Pasquali even suggested the thread-like fibers are light enough to deliver power to aerial vehicles. We’ve heard of wackier stuff work.

 “Suppose you want to power an unmanned aerial vehicle from the ground,” he mused. “You could make it like a kite, with power supplied by our fibers. I wish Ben Franklin were here to see that!”

Details were published in the journal Nanoscale. [story via Kurzeweil]

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.