homehome Home chatchat Notifications


Antimatter trapped for 15 minutes at CERN

The team operating the Antihydrogen Laser Physics Apparatus (ALPHA) at the CERN laboratory in Geneva, Switzerland reported storing antimatter for approximately 1000 seconds, which might not seem like much of a big deal, but it is about 10.000 times longer than the previous record ! A cloud of antihydrogen This study will hopefully reveal more […]

Mihai Andrei
May 4, 2011 @ 5:59 am

share Share

The team operating the Antihydrogen Laser Physics Apparatus (ALPHA) at the CERN laboratory in Geneva, Switzerland reported storing antimatter for approximately 1000 seconds, which might not seem like much of a big deal, but it is about 10.000 times longer than the previous record !

A cloud of antihydrogen

This study will hopefully reveal more about the elusive antimatter, and whether this is in fact the true mirror image of matter. With this thought in mind, the ALPHA team set out to find a way to capture antimatter for as long as possible; they devised an antimagnetic trap to help them capture a cloud of antihydrogen. The thing about antimatter is that it creates a bang whenever it comes in contact with matter, thus making it almost impossible to store for a long time.

In previous experiments, researchers would open the trap and observe the collisions between antimatter and the trace gases; the collisions either annihilated the antimatter or gave it enough energy to escape the trap. But this time, the people at CERN did things a little differently.

They waited much longer before opening the trap, and they cooled the antiprotons, which lowered the energy of antimatter, allowed more to be captured, thus raising the chance that some of it will be captured for a longer period of time.

Capturing antimatter for a longer time will allow further experiments to be conducted on it, such as checking if the energy levels of the antihydrogen and hydrogen are the same.

Elusive Antimatter

When introduced, antimatter was a revolutionary concept, and rejected by many physicists at the moment. In recent years, it has been shown that with the right process, it can be captured for a limited amount of time, which was generally restricted to a fraction of a second. CERN particle physicists shattered that ‘record’, capturing it for a much longer period, almost enough to perform some experiments on it.

In particle physics, antimatter is an extension of antiparticles to matter. If you have, say a hydrogen atom, which is made out of 1 proton (positively charged) and 1 electron (negatively charged), an antihydrogen atom will be made out of 1 antiproton and one positron.

It is theoretized that when the Universe was formed, matter and antimatter were created in equal amounts, but the question remains: where is all the antimatter ? We are all made out of matter (you, me, trees, planets, etc), but it is almost impossible to even get a glimpse of antimatter. This is why researchers hope to capture it for longer periods of time, thus allowing the possibility of experiments which would shed some light on some of the most important questions in physics at the moment.

share Share

This Tiny Nuclear Battery Could Last for Thousands of Years Without Charging

The radiocarbon battery is supposed to be safe for everyday operations.

Earth’s Longest Volcanic Ridge May Be an Underwater Moving Hotspot

Scientists uncover surprising evidence that the Kerguelen hotspot, responsible for the 5,000-kilometer-long Ninetyeast Ridge, exhibited significant motion.

Physicists just explained why the pop of a beer bottle sounds so perfect

A high-speed peek into what really happens when your beer bottle goes “pop.”

New NASA satellite mapped the oceans like never before

We know more about our Moon and Mars than the bottom of our oceans.

Physicists Think They've Found a Way to Harvest Energy from Earth's Rotation — And It Might Be Just Crazy Enough to Work

A wacky-looking hollow device is giving perpetual motion machine vibes.

Did WWI Dazzle Camouflage Actually Work? Scientists Revisit a 105-Year-Old Experiment to Find Out

Painting ships like zebras was a bold move, but it likely didn't fool U-boats. Something else worked though.

New Organic Semiconductor That Spirals Electrons Like a Corkscrew Could Lead to Brighter, More Energy-Efficient Screens

The technology could be applied to not just screens but also quantum computing and spintronics.

Black Holes Might Not Be Cosmic Dead-Ends But Rather the Beginning Of White Holes

From black holes to white holes. Who would've thought?

Cats Actually Have Hundreds of Facial Expressions and They Mirror Each Other to Form an Emotional Bond

Want to befriend a cat? Don't forget to blink or squint back if a cat does the same at you.

Physicist Claims Gravity Might Emerge From Entropy. Could This Unite Quantum Mechanics and Gravity?

A novel theory could finally bridge the gap between quantum physics and general relativity.