homehome Home chatchat Notifications


Why does nature keep making perfect cubical pyrite crystals?

There's a lof of chemistry wisdom in this "fool's gold."

Mihai Andrei
October 25, 2024 @ 8:48 pm

share Share

Pyrite crystals like this one can look very unnatural, but they’re formed by geological shapes. Image in Creative Commons.

Pyrite is often dismissed as “fool’s gold” but this mineral creates some of the most stunning crystals in nature. Walk into any mineral shop and one of the first thing that sounds out is the precise, cubical shape of pyrite crystals. This uncanny regularity, a rarity in naturally occurring structures, is completely natural. That’s just how pyrite crystals look oftentimes.

But why does this mineral have the unusually regular shape? It all boils down to how its molecules are arranged in three dimensions.

Pyrite crystals overgrown on each other. Image credits: James St. John.

Pyrite, chemically known as iron sulfide (FeS₂), is one of Earth’s most common sulfide minerals. Miners and prospectors have encountered it for centuries, often confusing it with gold due to its similar metallic sheen and bright yellow-gold color.

At the most fundamental level, the shape of pyrite crystals is dictated by its atomic structure and the laws of chemistry and physics. Pyrite’s cubic symmetry arises from its atomic lattice, which resembles a grid-like arrangement with strong geometric alignment. This lattice is a repeating pattern that directs the macroscopic properties of all crystals.

Image via Wiki Commons.

What makes a crystal

A crystal is a solid material whose atoms or molecules are arranged in a highly ordered, repeating pattern that extends in all three spatial dimensions. This regular arrangement, known as a crystal lattice, forms as atoms or molecules bond in a way that minimizes the structure’s overall energy, creating symmetry and stability.

Crystals form through natural processes like cooling of molten rock, evaporation of mineral-rich water, or gradual accumulation under pressure. This atomic precision gives crystals their characteristic hardness, optical clarity, and, in some cases, their striking symmetry.

Crystal structure of pyrite. Image via Wiki Commons.

There are seven major crystallization systems in mineralogy, each defined by unique symmetry properties and angles.

The seven main crystal systems—cubic, tetragonal, orthorhombic, hexagonal, trigonal, monoclinic, and triclinic—describe the spatial arrangement and symmetry of atoms within a crystal structure. Each system corresponds to a unique way atoms can align in three-dimensional space. Minerals within each system share certain geometric properties, resulting in similar external shapes.

Pyrite belongs to something called the cubic system.

“Cubic” minerals

The cubic, or isometric, crystal system is characterized by its high degree of symmetry, with three identical axes intersecting at 90° angles. Because of this uniformity, cubic crystals have inherent stability and symmetry that favor shapes like cubes. However, it’s not just cubes; minerals in this system also form octahedrons (eight faces), and dodecahedrons (12 faces).

Sometimes, crystals in the cubic systems can look a bit more like this. Image via Wiki Commons.

Minerals in the cubic system can exhibit “crystal habits” (their common shapes) that are remarkably regular, appearing as cubes, octahedrons, or even more complex polyhedrons with high symmetry.

Pyrite, chemically known as iron sulfide (FeS₂), is one of Earth’s most common sulfide minerals. Miners and prospectors have encountered it for centuries, often confusing it with gold due to its similar metallic sheen and bright yellow-gold color.

In the case of pyrite, the cubic system favors the formation of sharply defined cubes due to its atomic bonding patterns. Each crystal’s edges, faces, and angles are symmetrical, resulting in pyrite’s iconic, well-defined shape. Unlike more organic crystal forms that may twist, elongate, or take on asymmetric shapes, minerals in the cubic system often look more geometric, a result of the stable internal lattice created by the consistent, equal-length axes and right-angle intersections.

Other cubic minerals

Pyrite is far from the only mineral that creates cubic crystals.

Halite, commonly recognized as table salt (NaCl), often forms transparent, cube-shaped crystals due to the orderly arrangement of sodium and chloride ions in its lattice. Similarly, galena (PbS), a primary source of lead, displays a shiny, metallic appearance and typically forms as well-defined cubes that mirror its tightly packed atomic structure. Another notable cubic mineral is fluorite (CaF₂), which often appears in vibrant colors and can crystallize as cubes or octahedrons, thanks to the balanced bonding of calcium and fluoride ions.

Pyrite isn’t the only cubic mineral, but it’s one of the coolest ones. Image credits: Charos Pix.

Crystals in the cubic system provide natural examples of atomic stability and symmetry, with implications for creating synthetic materials. By understanding how elements like iron and sulfur align to form cubic crystals in nature, researchers can develop artificial processes to reproduce similar structural stability and geometric regularity in materials, paving the way for new innovations in nanotechnology, construction materials, and electronics.

For enjoyers of nature and geology, however, it can be rewarding to simply know why pyrite looks like this. Gaining a new level of understanding about pyrite can also offer a new level of appreciation for this common but still special mineral.

share Share

GeoPicture of the week: Biggest crystals in the world

Known as Cueva de los Cristales (Cave of Crystals), this hidden chamber in Mexico holds some of the largest natural crystals ever discovered. The translucent pillars, some as long as telephone poles and as wide as tree trunks, make for an eerie underground landscape, seemingly crafted by giants. But there’s no magic involved, just some […]

This rare mineral is older than the Earth

Krotite is a cosmic relic, one of the oldest minerals in the Solar System, formed under fiery conditions in the early protoplanetary disk.

Researchers find evidence of hot water on Mars -- in a rock on Earth

A zircon crystal from a Martian meteorite unlocks secrets of a water-rich, dynamic Mars 4.45 billion years ago.

Meet the world's rarest mineral. It was found only once

A single gemstone from Myanmar holds the title of Earth's rarest mineral, kyawthuite.

Massive exploding methane craters are tearing Siberia apart and scientists finally know why

Scientists uncover the mechanics behind Siberia's explosive craters as warming drives methane release.

From Wood to Rock: The Fascinating Process of Petrified Wood

Just like a number of creatures, wood can fossilize too.

Giant 160-million-year-old tadpole sheds new light on frog evolution

Amphibian fossils, particularly those capturing larval stages, are exceptionally rare due to tadpoles’ soft, delicate bodies, which are highly prone to decay.

Clinoptilolite: the unusual mineral used as protection after Chornobyl

This tongue-twister of a mineral has extraordinary uses, including nuclear disaster cleanups.

A stunning map of the Atlantic Ocean seafloor — and one woman's pioneering quest to publish it

The geology of the ocean floor is truly spectacular — perhaps even more than land geology. Unfortunately, it's really hard to study.

The stunning history of the Fukang Pallasite meteorite

In the year 2,000, a Chinese dealer purchased an unusual-looking rock weighing around a ton. He cleaned it off, removing 20 kilograms (44 lb) from it, and then took the rock (a gleaming mass of crystals and iron) to a Gem and Mineral Show in Tucson, Arizona. At the show, Dr. Dante Lauretta, a professor […]