homehome Home chatchat Notifications


Strict diet doubles lifespan of worms

Taking food away from C. elegans in larval stages suspends their development; while they still wiggle around and look for food, they are in a state of arrested development. However, when food becomes plentiful again, they start to develop normally – but live twice as long. This remarkably simple way of achieving longevity is not entirely surprising. It […]

Mihai Andrei
June 23, 2014 @ 3:40 pm

share Share

Taking food away from C. elegans in larval stages suspends their development; while they still wiggle around and look for food, they are in a state of arrested development. However, when food becomes plentiful again, they start to develop normally – but live twice as long.

This shows the nematode worm C. elegans with muscle cells fluorescently labeled in green and germ cells fluorescently labeled in red. These cells and others pause at a checkpoint in development and slow their aging when worms encounter a period of starvation. Credit: David Sherwood Lab, Duke University

This remarkably simple way of achieving longevity is not entirely surprising. It has been known for quite a while that a low intake of nutrients and reduced cellular activity are generally linked with longevity – but doubling the lifespan only through a strict but temporary diet, that’s something quite surprising.

“It is possible that low-nutrient diets set off the same pathways in us to put our cells in a quiescent state,” said David R. Sherwood, an associate professor of biology at Duke University. “The trick is to find a way to pharmacologically manipulate this process so that we can get the anti-aging benefits without the pain of diet restriction.”

Sherwood and his colleagues from Duke University took a myriad of creatures and deprived them of food, in order to study the effects on longevity. They studied rats, mice, yeast, flies, spiders, fish, monkeys and worms; the effects on longevity varied between 30 percent to 200 percent, but in all cases, the lifespan was increased. Caenorhabditis elegans, a non-parasitic worm showed the most promise.

In nature, C. elegans often suffers from hunger, and its bodily development heavily depends on the available nutrients. But what researchers observed was that during the later stages of the larval development (known as L3 and L4), if they don’t have enough nutrients, they just stop developing. It’s as if they simply pause or slow down their development until they have sufficient nutrients around.

“Development isn’t a continuous nonstop process,” said Schindler, who is lead author of the study. “Organisms have to monitor their environment and decide whether or not it is amenable to their development. If it isn’t, they stop, if it is, they go. Those checkpoints seem to exist to allow the animal to make that decision. And the decision has implications, because the resources either go to development or to survival.”

Researchers starved the larvae for two weeks, and then fed them nutrients they would stumble upon in nature. What they observed was that the worms would develop normally after that – with their lifespans drastically increased.

“This study has implications not only for aging, but also for cancer,” said Sherwood. “One of the biggest mysteries in cancer is how cancer cells metastasize early and then lie dormant for years before reawakening. My guess is that the pathways in worms that are arresting these cells and waking them up again are going to be the same pathways that are in human cancer metastases.”

 

Journal Reference: Adam J. Schindler, L. Ryan Baugh, David R. Sherwood. Identification of Late Larval Stage Developmental Checkpoints in Caenorhabditis elegans Regulated by Insulin/IGF and Steroid Hormone Signaling Pathways. PLoS Genetics, 2014; 10 (6): e1004426 DOI: 10.1371/journal.pgen.1004426

share Share

Archaeologists Find Neanderthal Stone Tool Technology in China

A surprising cache of stone tools unearthed in China closely resembles Neanderthal tech from Ice Age Europe.

A Software Engineer Created a PDF Bigger Than the Universe and Yes It's Real

Forget country-sized PDFs — someone just made one bigger than the universe.

The World's Tiniest Pacemaker is Smaller Than a Grain of Rice. It's Injected with a Syringe and Works using Light

This new pacemaker is so small doctors could inject it directly into your heart.

Scientists Just Made Cement 17x Tougher — By Looking at Seashells

Cement is a carbon monster — but scientists are taking a cue from seashells to make it tougher, safer, and greener.

Three Secret Russian Satellites Moved Strangely in Orbit and Then Dropped an Unidentified Object

We may be witnessing a glimpse into space warfare.

Researchers Say They’ve Solved One of the Most Annoying Flaws in AI Art

A new method that could finally fix the bizarre distortions in AI-generated images when they're anything but square.

The small town in Germany where both the car and the bicycle were invented

In the quiet German town of Mannheim, two radical inventions—the bicycle and the automobile—took their first wobbly rides and forever changed how the world moves.

Scientists Created a Chymeric Mouse Using Billion-Year-Old Genes That Predate Animals

A mouse was born using prehistoric genes and the results could transform regenerative medicine.

Americans Will Spend 6.5 Billion Hours on Filing Taxes This Year and It’s Costing Them Big

The hidden cost of filing taxes is worse than you think.

Underwater Tool Use: These Rainbow-Colored Fish Smash Shells With Rocks

Wrasse fish crack open shells with rocks in behavior once thought exclusive to mammals and birds.