homehome Home chatchat Notifications


Worm glue can help seal tissue

If you’re working in a biology lab, you may want to consider firing some of your assistants and hiring some sandcastle worms; they’re pretty good chemists, able to, among others, biosynthesize glue components they use to build the underwater tubular shelters they call home. Now, researchers are creating adhesives inspired from these chemicals that might […]

Mihai Andrei
August 14, 2014 @ 12:49 pm

share Share

If you’re working in a biology lab, you may want to consider firing some of your assistants and hiring some sandcastle worms; they’re pretty good chemists, able to, among others, biosynthesize glue components they use to build the underwater tubular shelters they call home. Now, researchers are creating adhesives inspired from these chemicals that might make surgeries safer or even block off blood vessels which feed cancerous tumors.

Two sandcastle worms’ heads poke out of tubular shelters (white) the worms build, while a third worm is temporarily tube-free. Credit: Fred Hayes, University of Utah

“It’s a classic example of borrowing successfully from nature,” comments biomedical sealants specialist Jeffrey M. Karp of Brigham & Women’s Hospital, Boston. “The Stewart group has taught the world how sandcastle worms achieve underwater adhesion and is now extending these discoveries to an approach that may find many practical solutions in medicine.”

The particular application they have in mind are in utero surgeries. Surgeries on developing fetuses are particularly delicate, and the amniotic membranes that protect fetuses in the womb can easily rupture. There are some issues with all adhesives used to treat these wounds; swell too much when they cure, which can cause damage to the delicate amniotic membranes. Others “are ineffective in the flexible, moist, and biochemically active conditions of the human body or are acutely cyotoxic,” says Nick Aldred of Newcastle University, in England, who is an expert on adhesives made by barnacles.

Basically, there is no fully satisfying solution for treating these injuries – and this is where sandcastle worms step in. Let’s get a little technical: highly charged polyelectrolyte glue components in different types of cells and then combine oppositely charged components enzymatically when constructing their shelters. Directly recreating these chemicals has been attempted, and was deemed not feasible, so researchers tried a different solution: they synthesized oppositely charged polyelectrolytes and combined them to form water-immiscible polymer solutions called complex coacervates. They then apply the coacervates to biological tissues and cross link them enzymatically to cure them into adhesives that bond to the tissues.

To simplify things, they didn’t recreate the natural enzymes, but used an analogous technique to develop oppositely charged polymers and then combined them together, binding them to biological tissues; it worked.

“Not only are the glues demonstrably effective, but they seem to cause little if any immune or cytotoxic response,” Aldred said. “In my view, they have a lot of potential and, importantly, could be economical to produce.”

So far, the results have been very encouraging.

“[They] have made astounding progress in quickly moving from understanding the key concepts of wet adhesion by the sandcastle worm to the point where they are able to synthesize a polymer that mimics it,” said Anne Marie Power of the National University of Ireland, who studies barnacle wet adhesion. “It could address a real surgical problem.”

share Share

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.

An Experimental Drug Just Slashed Genetic Heart Risk by 94%

One in 10 people carry this genetic heart risk. There's never been a treatment — until now.

We’re Getting Very Close to a Birth Control Pill for Men

Scientists may have just cracked the code for male birth control.

A New Antibiotic Was Hiding in Backyard Dirt and It Might Save Millions

A new antibiotic works when others fail.

Researchers Wake Up Algae That Went Dormant Before the First Pyramids

Scientists have revived 7,000-year-old algae from Baltic Sea sediments, pushing the limits of resurrection ecology.

A Fossil So Strange Scientists Think It’s From a Completely New Form of Life

This towering mystery fossil baffled scientists for 180 Years and it just got weirder.

ChatGPT Seems To Be Shifting to the Right. What Does That Even Mean?

ChatGPT doesn't have any political agenda but some unknown factor is causing a subtle shift in its responses.

This Freshwater Fish Can Live Over 120 Years and Shows No Signs of Aging. But It Has a Problem

An ancient freshwater species may be quietly facing a silent collapse.