homehome Home chatchat Notifications


Revolutionary wireless powered tiny device can swim through blood streams

Implantable medical devices, capable of delivering drugs or performing micro-surgery from inside the body, have been the subject of scientific research for decades now. A number of exciting prototypes have been developed in the past few years, as miniaturization allowed it, however reliability flaws rendered them unpractical. A new tiny device developed by Stanford electrical engineers, was presented […]

Mihai Andrei
February 23, 2012 @ 10:14 am

share Share

Implantable medical devices, capable of delivering drugs or performing micro-surgery from inside the body, have been the subject of scientific research for decades now. A number of exciting prototypes have been developed in the past few years, as miniaturization allowed it, however reliability flaws rendered them unpractical. A new tiny device developed by Stanford electrical engineers, was presented this week at the International Solid-State Circuits Conference by lead researcher Ada Poon, which is powered without wires or batteries and is small enough to travel through human blood streams.

“Such devices could revolutionize medical technology,” said Poon, an Electrical Engineering Assistant Professor. “Applications include everything from diagnostics to minimally invasive surgeries.”

The self-propelled wirelessly powered prototype developed by Stanford scientists, 3mm wide and 4mm long, showed resting upon one of the researcher's hand. (c) Stanford University

The self-propelled wirelessly powered prototype developed by Stanford scientists, 3mm wide and 4mm long, showed resting upon one of the researcher's hand. (c) Stanford University

In front of the conference audience, Poon demonstrated the working device, just a few millimeters in size and wirelessly powered, capable of controlled motion through a fluid, including blood. This could be the first of a new class of working medical implants, which could deliver drugs, perform analyses, and perhaps even zap blood clots or remove plaque from sclerotic arteries all from inside the human body. Since its power is derived wirelessly using electromagnetic radio waves, the device escapes all the reliability issues other implants meant for similar applications encountered. No batteries or wires means that the device can travel through the blood stream without risk of power failure and a dramatic scale down in size (batteries amount to most of the volume of such devices).

“While we have gotten very good at shrinking electronic and mechanical components of implants, energy storage has lagged in the move to miniaturize,” said co-author Teresa Meng, a professor of electrical engineering and computer science. “This hinders us in where we can place implants within the body and also creates the risk of corrosion or broken wires, not to mention replacing aging batteries.”

A tiny surgeon inside your blood vessels

Scientists have been trying to devise such medical wirelessly powered implants for 50 years now, but it seems the approach taken in the past was wrong, all because of one flawed assumption – that the human tissue is a good electrical conductor. Couldn’t been farther from the truth. With this inaccurate model in mind, high-frequency waves dissipate in the human tissue, dissipating as the device travels further.

Poon took a different approach, and considered the human tissue as a dielectric, a type of insulator – quite the opposite of previous assumptions! In a dielectric, the signal is conveyed as waves of shifting polarization of atoms within cells, which renders radio waves propagation possible. Moreover, the human tissue has been found to be “low-loss” dielectric, which means signal loss is minimal. Again, the opposite of past assumptions. These have all been demonstrate experimentally and mathematically.

“When we extended things to higher frequencies using a simple model of tissue, we realized that the optimal frequency for wireless powering is actually around one gigahertz,” said Poon, “about 100 times higher than previously thought.”

This revelation was instrumental to the researchers’ development, since it allowed them to build the device 100 times smaller and yet deliver the power needed by the medical device. This is why the antenna is just 2mm in size – small enough to travel through blood streams.

[RELATED] Nanotech powered by your breath

Two types of self-propelled devices were developed and demoed. One generates direction force to push itself forward by driving electrical current directly through the blood stream, allowing for velocity of around half a centimeter per second. The other, moves similar to the way a kayaker paddles upstream, switching current back and forth through a wire loop.

“There is considerable room for improvement and much work remains before such devices are ready for medical applications,” said Poon. “But for the first time in decades the possibility seems closer than ever.”

source

share Share

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

Mysterious "Disease X" identified as aggressive strain of malaria

The mystery of this Disease X seems to have been solved. Now to develop an approach to handling it.

Bird Flu Strikes Again: Severe Case Confirmed in the US. Here's what you need to know

Bird flu continues to loom as a global threat. A severe case in Louisiana is the latest development in a series of concerning H5N1 outbreaks.

These "Ants" Use Ultrablack to Warn Predators — and Stay Cool

Velvet ants, actually flightless wasps, boast an ultrablack exoskeleton thanks to dense nanostructures.

Scientists Discover a Surprising Side Effect of Intermittent Fasting — Slower Hair Regrowth

Fasting benefits metabolism but may hinder hair regeneration, at least in mice.

Origami-Inspired Heart Valve May Revolutionize Treatment for Toddlers

A team of researchers at UC Irvine has developed an origami-inspired heart valve that grows with toddlers.

Depression Risk Surges by 40% During Perimenopause, New Study Reveals

Women in the perimenopause stage are 40% more likely to experience depression compared to those who aren’t undergoing menopausal changes, according to a new study led by researchers at University College London (UCL). This research, published in the Journal of Affective Disorders, draws on data from over 9,000 women across the globe and underscores an […]

AI thought X-rays are connected to eating refried beans or drinking beer

Instead of finding true medical insights, these algorithms sometimes rely on irrelevant factors — leading to misleading results.

Scientists Call for a Global Pause on Creating “Mirror Life” Before It’s Too Late: “The threat we’re talking about is unprecedented”

Creating synthetic lifeforms is almost here, and the consequences could be devastating.

AI is scheming to stay online — and then lying to humans

An alarming third party report almost looks like a prequel to Terminator.